-

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per respon: S . . X
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Dir f i i

1215 Jefferson Davis Highway, Suite 1204, Arfington, VA 22202-4302, and t
Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

se, including the time for reviewing instructions, searching data sources

or
o the Office of Management and Budget,

on Op and Reports,

1. REPORT DATE (DD-MM-YYYY)
01/22/2001

2. REPORT DATE
Final Report

3. DATES COVERED (From - 7o)
1/1/97 —- 12/31/99

4. TITLE AND SUBTITLE

Volumetric Representation and Manipulation
of Geometric Models

Sa. CONTRACT NUMBER

5b. GRANT NUMBER

N00014-97-0223
5¢c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Turk, Greg

5d. PROJECT NUMBER

S5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Georgia Tech Research Corporation

Georgia Institute of Technology
Atlanta GA 30332-0420

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research, Ballston Centre Tower One ONR
800 North Quincy Street
Arlington VA 22217-5660

Unlimited

12. DISTRIBUTION AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER

20010225 069 -

14. ABSTRACT

work,

number N00014-97-1-0223.

models using volumetric techniques.

This is the final report of the work that was funded by the ONR contract

The goal of this research project was to investigate
new methods of representing and manipulating three-dimensional geometric

Three sub-areas were particular targets
for these investigations: 1) explore ways of extending the kinds of models
that can be represented volumetrically, 2)create nultiresolution models using
volume techniques, and 3) perform shape transformation using a volumetric

15. SUBJECT TERMS

3D Geometric Models

16. SECURITY CLASSIFICATION OF:

U U

a. REPORT b. ABSTRACT |c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

uu

18. NUMBER
OF PAGES

73

19a. NAME OF RESPONSIBLE PERSON

Greg Turk
19b. TELEPONE NUMBER (/nclude area code)

404/894-7508

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI-Std 239-18

Interior/Exterior Classification of Polygonal Models

F.S. Nooruddin and Greg Turk

GVU Center, College of Computing, Georgia Institute of Technology

Abstract

We present an algorithm for automatically classifying the
interior and exterior parts of a polygonal model. The need
for visualizing the interiors of objects frequently arises in
medical visualization and CAD modeling. The goal of such
visualizations is to display the model in a way that the hu-
man observer can easily understand the relationship between
the different parts of the surface. While there exist excellent
methods for visualizing surfaces that are inside one another
(nested surfaces), the determination of which parts of the
surface are interior is currently done manually.

Our automatic method for interior classification takes a
sampling approach using a collection of direction vectors.
Polygons are said to be interior to the model if they are not
visible in any of these viewing directions from a point out-
side the model. Once we have identified polygons as being
inside or outside the model, these can be textured or have
different opacities applied to them so that the whole model
can be rendered in a more comprehensible manner. An addi-
tional consideration for some models is that they may have
holes or tunnels running through them that are connected
to the exterior surface. Although an external observer can
see into these holes, it is often desirable to mark the walls of
such tunnels as being part of the interior of a model. In order
to allow this modified classification of the interior. we use
morphological operators to close all the holes of the model.
An input model is used together with its closed version to
provide a better classification of the portions of the original
model.

Keywords: Visibility. Surface Classification. Rendering,
Interior Surfaces

1 Introduction

In this paper we present a method for determining the in-
terior and the exterior portions of a given polygonal model.
Our motivation is that for many visualization applications
it is desirable to display surfaces in such a way that a hu-
man observer can clearly see the relationships between dif-
ferent parts of the object. While excellent techniques exist
for displaying nested surfaces [4, 5, 6, 9], the determination
of which surfaces are exterior to the model and which are

e-mail: {fsn,turk} @cc.gatech.edu

interior is typically not an automated process. Usually this
classification is done either by hand or by connected compo-
nent analysis. For many models in application areas such as
medicine or industrial design, connected component analy-
sis is not helpful because different parts of the model may
be connected to each other by holes, tubes or thin structures.
Our method overcomes this limitation of connected compo-
nent analysis.

For some applications, the nature of the data can give
clues as to whether a portion of a surface should be con-
sidered interior. For example, with medical data from CT
or MRI, the volume densities may be used to help classify
different tissue types. Unfortunately, such approaches fail
when a user wishes to visualize the interior structure of an
organ that is relatively uniform in tissue type such as the
chambers of the heart, the alveoli of the lungs or the folds
and interior cavities of the brain. Likewise, some CAD data
may be tagged with different part identifiers or surface prop-
erties. In some cases, however, these tags have been lost or
the model that is being visualized is from actual captured
data for parts inspection such as CT. In these cases, once
again we require an automated method of identifying inte-
rior parts without the aid of pre-specified tags.

In this paper we present a new technique that classifies
each polygon of a given model as being either interior or
exterior to the surface. We can then use different rendering
styles to show off these different portions of a surface. Our
method uses a collection of viewing directions in order to
classify each point as being a part of the exterior or the inte-
rior of the model. When processing models with holes, we
first use volumetric morphology to obtain a closed version
of the input model. The closed model is used in conjunction
with the original model to provide a better classification for
the surfaces of the original model.

The remainder of the paper is organized as follows. In
Section 2 we review existing methods for viewing interiors
of models. In Section 3 we present our definition of visibil-
ity. In Section 4 we describe how to generate a “deep” depth
buffer for each viewpoint. In Section 5 we describe how we
use the depth buffers to classify a polygon as being exterior
or interior to the model. In Section 6 we describe the use of
morphology to close holes in models to get improved results.
In Section 7 we present the results of our method. Section 8
provides a summary and describes possible future work.

2 Previous Work

There have been several techniques in graphics and visual-
ization that are tailored towards viewing the interior of sur-
faces, including wireframe drawing, clipping and volume
rendering. We will briefly review each of these below.
Wireframe drawing of polygonal models has been used in
computer graphics at least since the 1950's. Until fast poly-
gon rasterization hardware came along in the 1980's, wire-
frame drawings on raster or calligraphic displays was the
viewing method of choice for rapid examination of 3D ob-

Figure 1: Top left: Cube with three holes, rendered as an opaque surface. Top right: wireframe rendering of the same cube.
Bottom left: Another view of opague cube with an internal polygon highlighted. Bottom right: Cube with a translucent external

surface and an opaque interior surface.

jects. At present, wireframe drawings of models are some-
times used to show some of the interior detail of simple
models. Unfortunately there is considerable ambiguity in
viewing such a wireframe model due to lack of occlusion
between lines at different depths. Moreover, polygon size
greatly affects the understanding of such images. An inner
surface that is tiled with just a few large polygons may be
difficult to see because the surface is represented only by a
small number of lines. Figure 1 (top right) shows a wire-
frame drawing of a cube with holes.

Clipping planes and solids are often used in visualiza-
tion to allow an observer to see into a portion of a model.
Rossignac et al. demonstrated a variety of solid clipping
techniques for CAD model inspection, including methods
for cross-hatching those portions of a model that have been

sliced [10]. Cutting planes, half-planes and other shapes
have been used in volume rendering to see into the interi-
ors of objects. Medical data has been the application area
where this has been put to use the most extensively [12].
Unfortunately, creating clipping planes or clipping volumes
that are tailored for a given object is a user-intensive task.
Volume rendering techniques allow some portions of a
model to be made translucent or entirely transparent, allow-
ing an observer to see interior parts of a model [2, 6]. Seg-
mentation of a volume model, whether it is done automati-
cally or by hand, allows regions to be tagged as translucent
or opagque for better comprehension of interior surfaces. Au-
tomatic segmentation is very useful if the model to be visual-
ized is composed of different materials with differing voxel
densities, as is common with medical data. In many cases,

Figure 2: Gray-scale representation of three of the depth buffers created for a skull dataset. Brighter pixels are locations where

more depth samples are present in the buffer.

however, such as the turbine blade or the skull of Figure 6,
there is no way to separate out the interior structure based
on density values.

There are several published methods for viewing mul-
tiple nested surfaces in order to show the context of one
surface inside another. These methods render interior sur-
faces as opaque, but place a pattern on a translucent exterior
surface in order to better understand the shape of this par-
tially transparent surface. Interrante has used both strokes
and line integral convolution to decorate translucent exterior
surfaces [4, 5]. Rheingans used re-triangulation of a given
polygonal model in order to create regular patterns such as
disks on a partially transparent exterior surface [9]. Given
an automatic technique for identifying interior and exterior
portions of a surface, any of these techniques could be put to
better use to show the relationships between these different
portions of a surface.

3 Defining Visibility

Our first task is to define what we mean for a portion of a
surface S to be exterior or interior. These definitions will
depend on the visibility of the part of the surface in ques-
tion. Intuitively, we will say that a point p is on the exterior
of a surface if there is some sufficiently distant viewpoint q
from which p is visible. We say “sufficiently distant view-
point” because there is always some position q from which
a given point will be visible, and we wish to disallow those
viewpoints that are too close (or perhaps inside) the surface.

To define exterior, we will make use of the concept of the
extremal points of a surface along aline. A line L that passes
through two points p1 and p can be defined as the set of
points L = {p1 + t(pz — p1) : t € R}. Consider the
set of points of the surface along aline, T = SN L. Any
point p in this set can be written as p = p1 + {(p2 — p1)
for some ¢, which can allow us to define a function t(p) =
(p — p1)/(pPz — p1). We will say that a point pin 7 is
an extremal point if the value of ¢(p) takes on either the
minimum or maximum value for all points in 7. It is now
easy to define interior and exterior. We define a point pon .S
to be exterior if it is an extremal point for some line L. We
will say p on S is interior if it is not an extremal point for
any line L.

It is a compute-intensive task to determine whether there
exists a line for which a given point is extremal. For our own
work, we have found it sufficient to consider a collection
of lines that are parallel to one of a small set of directions
V. The elements of V are vectors {V1,Vz....,Vn} that
are evenly distributed over a hemisphere. We then consider

whether a given point p is extremal along any of the lines
L = p+tvforv € V. In our method, we classify a point
p on asurface S as exterior if it is an extremal point along a
line that passes through p along at least one of the directions
in V. We will classify a point as interior if it is not exterior.
In the following sections we will describe a fast algorithm
for performing this classification task.

4 Generating Depth Buffers

Given a set of viewing vectors V = {v1,va,--, vn}, we
seek a way to mark which polygons are visible along each
viewing direction v;. A polygon p is classified as being in-
side the model if all the rays cast along v; strike another
surface before hitting p. In order to do this process effi-
ciently for large polygonal models, we use polygon scan-
conversion with an orthographic projection to create “deep”
depth buffers. OQur “deep” depth buffers are similar in struc-
ture to the Layered Depth Images presented in [11]. In that
work, each pixel in a LDI kept a list of depth samples repre-
senting depth samples further and further along a single line
of sight. Similarly in our case, a depth buffer is a 2D array
of pixels. Each “deep” pixel in the depth buffer contains not
only the depth sample for the nearest polygon, but a sorted
list of depth samples. Each depth sample in the list repre-
sents the intersection of a ray shot through the pixel with a
polygon of the model. By using an orthographic projection,
we are effectively sampling the model along a large collec-
tion of rays that are parallel to a given direction v;.

5 Classification

5.1 Using Depth Buffers

Once a depth buffer has been generated for each view, we are
ready to classify all the polygons of the input model. To this
end, we take a polygon p from the input model, and check
how many views from which it is visible. For each view
vk we select the depth buffer di. For each vertex of p, we
find the depth pixel dx (i, j) onto which the vertex projects.
The vertex is marked exterior if it is either the first or the
last surface that the ray passing through dx (¢, 7) intersects.
This corresponds to testing whether the vertex generated the
first or last depth sample in the sorted list of depth samples
stored at dx (1, §). The closest intersection to the vertex of p
is reported back as the depth sample generated by that ver-
tex. The polygon p is marked visible if all of its vertices are
visible, and it is marked invisible otherwise.

We keep track of the number of depth buffers that declare
p to be on the exterior and the number that classify p as
being on the interior of the model. Figure 2 shows three out
of the 40 depth buffers we used to classify the polygons of
a skull model. When assigning the final classification to p,
we require that at least m buffers classify it as being visible
for the algorithm to declare that p is visible. This threshold
value m is a user defined parameter in our implementation.

The reason a voting scheme is necessary to make the final
visibility classification is that often all the depth buffers will
not agree on the classification of a polygon. This can happen
in several cases. The most common case is that of the input
model containing tunnels. The polygons along the wall of a
tunnel will be visible from a viewpoint that looks down the
tunnel. This case in shown in Figure 1 (bottom left) where
the marked polygon is visible from the current viewpoint,
although it is embedded deep in the interior of the model. In
this case, viewing directions orthogonal to the current view-
point will vote that the highlighted polygon is interior to the
model.

The other case where the depth buffers disagree on
whether a polygon is visible or not is that of complex sur-
faces. Such models have polygons on the exterior surface
that lie in highly occluded parts of the model. A large num-
ber of viewpoints must be used to adequately sample all the
parts of the exterior surface. Polygons that lie in occluded
parts of the model are only visible from a small number of
viewing directions. Therefore we should expect that most of
the depth buffers will vote for classifying such polygons as
being invisible, while a small number of depth buffers will
vote to make these polygons visible.

The classification threshold represents a trade-off be-
tween the two cases outlined above. If set too low, most
polygons that lie on the interjor of tubes embedded in the
model will incorrectly be marked visible. However, poly-
gons that lie on the exterior surface but in highly occluded
parts of the model will be correctly marked visible. If it
is set too high, then the algorithm will misclassify highly
occluded polygons on the exterior surface of the model as
being invisible. Polygons inside tubes will be marked in-
visible as expected. To alleviate this difficulty in choosing
the correct classification threshold, we use morphology to
close holes and collapse tunnels in complex models. This
preprocessing step allows us to use the classification thresh-
old solely to classify highly occluded polygons on surface
the of a complex surface.

It is also possible to use the depth buffers to assign opac-
ity values to the polygons of the model. These opacity val-
ues can then be used to render the model. For example, if
40 viewing directions are used to do the classification, then
polygons visible from all 40 directions can be made almost
transparent. Polygons that were not visible from any direc-
tions can be marked opaque. The opacity of polygons vis-
ible from a certain number of viewing directions can have
an opacity value assigned to them based on the number of
directions from which they are visible. The Skull and Motor
models in Figure 6 were rendered using this scheme.

5.2 Processing Large Triangles

As described in Section 5.1, we project each of the vertices
of a polygon p into all the depth buffers to determine the visi-
bility of p. If pis a large polygon, then there is a good chance
that the visibility will vary across p. Figure 1 (bottom left)
shows this case. The highlighted polygon runs all the way
across the tunnel. The solution that we employ to deal with

this problem is to break up large triangles into smaller ones.
The decision of whether to subdivide a triangle is based on
an edge-length tolerance that can be specified by the user.
The smaller the edge-length tolerance, the greater the num-
ber of triangles that will be generated. And as smaller trian-
gles result in better classification, the final result will benefit
from a small edge-length threshold. In practise, the edge-
length threshold is constrained by the largest file size on the
machine being used, or by memory considerations.

We iterate over all the triangles in the input model, subdi-
viding them until the largest edge in the model is below the
user specified threshold. Once a triangle ¢ has been subdi-
vided into a n smaller triangles {to, t1, - -, ¢n}, We process
each of newly created triangles in the same way that a tri-
angle belonging to the original model would be treated. For
each t,, we project its three vertices into all the depth buffers.
Once all the depth buffers have voted on the visibility of ¢,
we use the threshold to decide on the final classification of
t;.

6 Morphology

We use volumetric morphology to close holes and tunnels in
complex models. Because our input models are polygonal,
we require a robust method of converting a polygonal model
to a volumetric representation. The technique that we use
to voxelize the input polygonal model is described in [8].
To perform volumetric morphology, we use a 3D version
of Danielsson's Euclidean 2D distance map algorithm [1].
The input to the distance map algorithm is a binary volume.
Such a volume has voxels with the value 0 if they are not
on the surface of the object, and 1 otherwise. The output
of the distance map algorithm is a volume with the same
dimensions as the input volume. This distance map volume
contains, for each voxel, the distance to the nearest voxel on
the surface. As expected, the distance map value of surface
voxels is zero.

Given the distance map and a closing distance d, we can
perform a volumetric closing of the volume. A closing op-
eration consists of a dilation followed by an erosion. A di-
lation will convert all the background voxels within a dis-
tance d of the surface into surface voxels. The erosion oper-
ator converts all the surface voxels within distance d of any
background voxel into background voxels. A closing oper-
ation will close holes and eliminate thin tunnels. Figure 3
shows the underside of both the original and a morpholog-
ically closed version of a turbine blade. The size of tun-
nels and holes in the volumetric description depends on the
voxel resolution. In our work, we have found that the model
should be voxelized at approximatley 10 times the closing
distance.

After performing a closing on the volumetric description
of the model, we apply the Marching Cubes algorithm [7] to
the volume to obtain an isosurface. This isosurface, which
is a closed version of the input model, is used to generate
another set of depth buffers from all the viewpoints. The
depth buffers from the original and closed models are used
together to classify all the polygons in the original model.

When classifying a polygon p in this case, we project
p into both the original depth buffers and the closed depth
buffers. We first check to see if p was near the exterior sur-
face in the original depth buffer. As before, we project p
into the depth buffer being processed. If p is too far away
from both the minimum and maximum depth values, then it
is marked as interior to the surface and the next depth buffer
is considered. The maximum distance that p is allowed to

R R -4

Figure 3: View of the four large holes in the base of the
turbine blade (top) and the morphologically closed holes of
the same model (bottom).

deviate from the minimum and maximum depth values is a
user controlled parameter in our implementation. If both a
morphologically closed and the original model are used to
determine the visibility of the polygons, then this distance
is equal to the closing distance used to produce the closed
version of the model. If morphology is not used, then this
distance should be set to the depth buffer resolution.

When p is determined to lie close to the exterior surface
in the original model, we need to ensure that it is not part
of a tunnel in the original model. To do this, we project p
into the closed depth buffer and examine the list of depth
values at the depth pixel that p projects to. If p was inside
a tunnel in the original model, then it will not be close to
any depth sample values in the closed model's depth buffers.
This is due to the fact that the closed model does not have
any tunnels, and therefore there will be no depth samples in
its depth buffers at locations where the tunnel existed in the

original model.

7 Results

In this section we describe the results of applying our visibil-
ity classification to several polygonal models. All the images
of Figure 6 are reproduced in the colorplate. For all of the re-
sults in this paper we used 40 viewing directions to create 40
depth buffers. These 40 directions were taken from the face
normals of an icosahedron whose triangles were subdivided
into four smaller triangles and whose vertices were then pro-
jected onto the surface of a sphere. Only face normals from
half this model were used for the viewing directions since
opposite faces define the same lines.

Figure 1 shows a model of a cube that has three holes
punched through it. Rendering the surface as opaque does
not show details of the geometry of how the holes meet in the
interior of the model. The lower right of this figure shows a
rendering of this cube based on our algorithm's classification
of interior and exterior portions of the model. The exterior
surface has been rendered partially transparent, and the inte-
rior is opaque. In this image, the interior structure is clearly
evident. For this relatively simple model it would have been
possible to come up with a mathematical expression to clas-
sify the interior and exterior. The other models we discuss
below are far too complex to create any classification using
such a mathematical expression.

Figure 4 (left) shows an opaque version of a turbine blade
model that was created from CT data of an actual blade.
The right portion of this figure shows only those polygons
that have been classified as interior by our algorithm. Fig-
ure 6 (top row) shows more views of the same turbine blade
model. These images were created using classificationbased
on 40 viewing directions and the morphologically closed
version of the object that is shown in the bottom of Fig-
ure 3. The detailed interior structure of the turbine blade is
clearly revealed in these images. There are four large holes
in its base that merge pairwise into two passageways. Each
passageway snakes up, down, up, and then each meets up
with many tiny holes on the left and right sides of the blade.
In addition, the top right image shows a small tube (in the
lower right of this image) that extends from the back to the
side of the blade. This tube was previously unknown to us,
even though we have used this turbine blade as a test model
for several years, often rotating it interactively on a high-
end graphics workstation. This indicates to us that images
based on interior/exterior classification show promise for ex-
ploratory visualization of data.

Figure 6 (bottom row) shows a car engine model that was
created by hand. This model has interesting topology in the
sense that there are a number of parts connected by tubes
and thin structures. In addition, this model! has a large num-
ber of degeneracies such as T-joints, zero-area faces and
non-manifold vertices. In this case, we did not perform a
binary interior/exterior classification of the polygons of the
motor model. Instead each polygon was assigned an opacity
value based on the number of buffers that it was visible from.
Again, 40 views and a morphologically closed version of the
mode! were used to perform the opacity assignment. Poly-
gons that were seen from more than 60% of the depth buffers
were made almost transparent. And polygons that were vis-
ible from less than 10% of the buffers were made opaque.
Other polygons were assigned opacities that varied linearly
between these two limits. The closeup of the front part of
the model shows quite clearly the gears and thin pipes in the

P rrrrrrrreororne T T

Figure 4: Opaque rendering of turbine blade (left), and just the interior surfaces (right) as classified by the method of this paper.

interior of the motor. The side view of the motor shows the
cam-shaft of the engine in the lower part of the model.

Figure 6 (middle row) shows a dataset created from 124
CT slices of 2 human skull. Figure 5 shows two opaque ren-
derings of the skull. 40 views and a morphologically closed
version of the model were used to perform the opacity as-
signment. Again we did not do a binary interior/exterior
classification of the polygons of the skull model, but instead
assigned them opacities based on the number of directions
from which they were visible. Turning the exterior surface
transparent clearly reveals the two large sinus cavities on ei-
ther side of the nose. Other detail is evident in these images,
including a thin hollow tube on the forehead near the loca-
tion where the plates of the skull join in the first two years
after birth, and another small tube at the base of the jaw. The
rightmost image of the back of the skull shows the interior
suture lines, which are the interior versions of the more fa-
miliar suture lines on top of the skull that are visible from
the outside.

Table 1 list the timing results of the different portions of
the classification algorithm. In all cases, classification is per-
formed in just a few minutes. Because our algorithm is pro-
posed as a preprocessing step to a visualization method, the
classification only needs to be done once for a given polyg-
onal model.

8 Summary and Future Work

We believe that this paper makes two contributions to the
field of visualization. First, we have identified a new prob-
lem, namely the problem of classifying exterior and interior
portions of a polygonal model. The solution to this problem
has potential applications in a number of areas in visualiza-
tion, Second, we have proposed a specific solution to this
problem — creating depth buffers of a model in several di-
rections and classifying polygons based on whether they are

occluded in each of these directions. We further enhanced
this method by closing holes using a morphological opera-
tor. We use classification information to make interior sur-
faces opaque and exterior surfaces partially transparent in
order to visualize the relation between these portions of a
model. This new approach gave results that revealed several
features of the models that we did not know about prior to
running the interior/exterior classification.

As with most first attempts to solve a new computational
problem, the approach that we describe here is not ideal in
all cases. High frequency variations in the surface can cause
some small portions of a surface to be classified as interior
even though a human observer would label them as exterior.
Perhaps surface smoothing or some form of neighborhood
information could be used to eliminate this problem.

Although our current implementation is quite fast, it may
be possible to accelerate the method using hardware render-
ing rather than software scan-conversion to create the depth
buffers. Finally, the results of our classification should be
used in conjunction with a method that adds texture to exte-
rior surfaces to better understand their shape.

9 Acknowledgements

We are gratefu] to Will Schroeder, Ken Martin and Bill
Lorensen for the use of the turbine blade data that is included
in the CD-ROM of their book The Visualization Toolkit. We
thank Bruce Teeter and Bill Lorensen of General Electric
and Terry Yoo of the National Library of Medicine for the
skull data.

References

{1] DANIELSSON, P. Euclidean Distance Mapping. Computer
Graphics and Image Processing, 14,1980, pp. 227-248.

Figure 5: Opaque renderings of the Motor and Skull models. Notice the exterior suture lines on the back of the skull.

Time to Process Models
(minutes:seconds)
Model Size Triangles Processed Depth Buffer | Morphology | Classification | Total
(# polygons) | (Small Triangles Generated) Creation
Blade 50,000 285,070 (375,994) 1:29 1:09 8:44 11:22
Skull 200,000 216,625 (29.371) 6:00 0:53 6:01 9:51
Motor 140,113 219,698 (122,219) 2:57 0:52 6:09 9:59
Cube 578 1,730 (1,820) 0:27 * 0:42 1:09

Table 1: This table shows the timing information for each stage of the classification process. All the timing measurements were
taken on a SGI Octane with 256 Mb of Ram.

(2]

(3]

(4]

[s

—

{6

(7

[8

—

{9)

DREBIN, ROBERT A, LOREN CARPENTER, and PAT HAN-
RAHAN Volume Rendering, Computer Graphics, Vol. 22, No.
4 (SIGGRAPH 88), August 1988, pp. 65-74.

EL-SANA, J. and A. VARSHNEY Controlled Simplification
of Genus for Polygonal Models, Proceedings of IEEE Visual-
ization '97, Oct. 19 - 24, Phoenix, Arizona. pp. 403-412.

INTERRANTE, VICTORIA, HENRY FUCHS and STEPHEN
P1ZER, Enhancing Transparent Skin Surfaces with Ridge and
Valley Lines, Proceedings of IEEE Visualization '95, October
29 - November 3, Atlanta, Georgia, pp. 52-59.

INTERRANTE, VICTORIA, Illustrating Surface Shape in Vol-
ume Data via Principal Direction- Driven 3D Line Integral
Convolution, Computer Graphics Proceedings, Annual Con-
ference Series (SIGGRAPH 97), pp. 109-116.

LEVOY, MARC, Display of Surfaces from Volume Data, IEEE
Computer Graphics and Applications, Vol. 8, No. 3, May
1988, pp. 29-37.

LORENSEN, W.E. and CLINE, H.E., Marching cubes: A
high resolution 3-d surface construction algorithm, Com-
puter Graphics Proceedings, Annual Conference Series (S1G-
GRAPH 1987), pp. 163-169.

NOORUDDIN, F.S. and GREG TURK, Simplification and Re-
pair of Polygonal Models Using Volumetric Morphology,
Technical Report GIT-GVU-99-37, Georgia Institute of Tech-
nology, 1999.

RHEINGANS, PENNY, Opacity-modulated Triangular Tex-
tures for Irregular Surfaces, Proceedings of IEEE Visualiza-
tion '96, San Francisco, California, Oct. 27 - Nov 1, 1996.
pp- 219-225.

(10]

(m

(12}

JAREK ROSSIGNAC, ABE MEGHAD, and BENGT-OLAF
SCHNEIDER, Interactive Inspection of Solids: Cross-sections
and Interferences, Computer Graphics, Yol. 26, No. 2 (SIG-
GRAPH 92), July 1992, pp. 353-360.

SHADE, JOHNATHAN, S. GORTLER, L. HE and R.
SZELISKI, Layered Depth Images, Computer Graphics Pro-
ceedings, Annual Conference Series (SIGGRAPH 98). pp.
231-242.

TIEDE, U., K. H. HOENE, M. BOMANS, A. POMMERT, M.
RIEMER, and G. WIEBECKE, Investigation of Medical 3D-
Rendering Algorithms, IEEE Computer Graphics and Appli-
cations, Vol. 10, No. 2, 1990, pp. 41-53.

Figure 6: Results of applying our algorithm to the Skull, Motor and Turbine Blade models. A binary classification was
performed on the polygons of the blade model. The polygons of the Skull and Motor models had their opacities modulated
based on the number of directions from which they were visible.

Simplification and Repair of Polygonal
Models Using Volumetric Techniques

F.S. Nooruddin and Greg Turk

1. ABSTRACT

Two important tools for manipulating polygonal models are simplification and repair, and
we present voxel-based methods for performing both of these tasks. We describe a method
for converting polygonal models to a volumetric representation in a way that handles models
with holes, double walls and intersecting parts. This allows us to perform polygon model repair
simply by converting a model to and from the volumetric domain. We also describe a new
topology-altering simplification method that is based on 3D morphological operators. Visually
unimportant features such as tubes and holes may be eliminated from a model by the open
and close morphological operators. Our simplification approach accepts polygonal models as
input, scan converts these to create a volumetric description, performs topology modification
and then converts the results back to polygons. We then apply a topology-preserving polygon
simplification technique to produce a final model. Our simplification method produces results
that are everywhere manifold.

II. INTRODUCTION

We are in the midst of an explosion in the production of very large geometric models. Advances
in many technical areas are fueling this trend: remote sensing, medical scanning, scientific
computing, CAD. Remote sensing devices such as synthetic aperture radar produce enormous
terrain datasets. Medical sensing technology such as MRI, CT and PET scanners produce
large volume datasets that lead to the creation of large isosurfaces. Scientific computing for
applications such as structural analysis, synthetic wind tunnels and weather prediction result in
large datasets that may vary over time. Finally, computer-aided design is used routinely for large
tasks in architecture and mechanical design. Polygon representations of CAD models may run
into the hundreds of thousands of polygons. We require robust methods for manipulating such
large models. Two important tools are repair of models that are non-manifold and simplification
of models. Repair is the process of taking a model that may have undesirable features such as
cracks or self-intersections and creating a new model similar to the original but that has none of
its flaws. Simplification of a polygonal model produces another model that has much the same
appearance as the original but has many fewer polygons. Our paper addresses both of these
tasks.

Many algorithms and applications require well-behaved polygon models as input. T-joints,
cracks, holes, double walls, and more than two polygons meeting at an edge are just a few of the
possible degeneracies that are often disallowed by various algorithms. Unfortunately, it is all
too common to find polygonal models that have such problems. Applications that may require
«clean” models include finite element analysis, radiosity, shape transformation, surface smooth-
ing, calculation of moments of inertia, automatic model simplification, and stereolithography.
Several approaches to polygonal model repair have been presented in the graphics literature.
Unfortunately, most of these proposed methods are complex to program and some do not scale
well as the polygon count increases. We present a method of scan-converting polygons into
a voxel representation that yields a simple yet effective solution to polygon repair. The same
voxelization process is also an important step in our simplification method.

Much work has been published recently in the area of automatic simplification of polygonal
models, and yet there are still many problems that need to be addressed. One of the important

{
‘2

jssues is the elimination of unnecessary fine details such as small holes or thin struts— a task that
implies making changes to the topology of a model. Many of the earlier published simplification
methods made an effort to preserve the topology of the original model. It eventually became
evident, however, that topology is often a limiting factor in the simplification of a given object.
Consider a box with 100 tiny holes punched all the way through it. A simplification method
that preserves topology must retain at least three polygons to represent each hole, and thus
will retain at least 300 polygons, yet the model can be fairly well represented using just six
faces. This problem has led several researchers to relax the restriction on topology preservation
in order to remove small features such as small holes or thin bars and pipes. One important
issue in topology simplification is whether a user may specify the exact size of the features to be
removed from a model. A second issue is whether the simplification method produces manifold
surfaces. Additional issues include the simplicity of programming, the memory requirements
and the computational cost, and these are important regardless of the treatment of topology.

We have pursued a volumetric approach to geometric simplification. There are several reasons
for this choice. First, volume models have none of the topological ambiguities that a polygonal
model may have. For example, it is possible for a polygonal model to contain three or more
polygons that share an edge— a non-manifold situation. Purists may argue that such models
should never be created in the first place, but the fact is that models with non-manifold surfaces
are only too common. We feel it is necessary to handle these common cases, and we do this
during the step that converts polygonal models to a volumetric representation. A second reason
for working in the volume domain is that we then have access to a wide array of techniques
that have been developed for image processing, since volumes have the same regular structure
as images but in one higher dimension. Finally, there are dozens of polygon-based methods for
performing simplification, and in contrast there have been relatively few proposed methods that
make use of a volumetric representation.

Figure 1 shows a schematic diagram of our simplification pipeline. There are four stages in
our simplification method: voxelization, 3D morphology, isosurface extraction and triangle count
reduction. If the goal of the user is only to repair a polygonal model, then the morphological
operations are not performed.

The remainder of this paper is organized as follows: in Section 3, we present a brief literature
review of polygon simplification, voxelization and model repair. In Section 4 we describe our
new method for converting a polygonal model into a volumetric representation. In Section 5, we
describe volumetric morphology and show how it is used to simplify the topology of an object.
In Section 6 we discuss isosurface extraction and topology preserving triangle count reduction
for producing the final model. Section 7 presents the results of our approach when used on a
variety of models, discusses these results and gives timing information. Section 8 summarizes
the characteristics of our approach and describes possible future work.

III. RELATED WORK

In this section we review previous work in simplification and model repair. Because conversion
of polygons into voxels is an important step in our approach, we also review related work in
voxelization.

A. Simplification

A large number of approaches to geometric simplification have been published in the graphics
literature. Rather than attempting to cover all of them, we will concentrate our attention on
those simplification methods that allow the topology of a model to be changed.

Rossignac and Borrel created one of the earliest methods of performing polygonal simplification
that allows topological changes [27]. Their approach is to group the vertices of a model into
clusters that fall within the cubes formed by a uniform spatial subdivision. Those vertices that
fall within one cell are merged into a single vertex, and the degenerate triangles that are created

e

Original
Polygonal
Model

Voxelization

Voxels

3D Morphology

Volume with
Simplified
Topology

Isosurface
Extraction

Polygons

Triangle Count
Reduction

Final Polygonal
Model

Fig. 1. The simplification pipeline. Dotted arrow shows the path used for model repair.

4

by this are removed from the model. More recently, Low and Tan have enhanced this approach
by making the vertex clustering independent of the position of the model in 3D, and they also
select the position of the new vertices using new heuristics [22]. Luebke and Erikson also used
such a vertex clustering scheme in their view-dependent simplification approach [23]. Due to
the dynamic nature of view-dependent simplification, they used a tree data structure in which
to store a hierarchy of potential vertex clusters.

Schroeder and co-workers created one of the earliest polygonal simplification algorithms that
successively removes vertices near relatively flat regions [29]. The original algorithm pre-
served topology, but in more recent work, Schroeder extended this method to allow topological
changes [30]. When no more vertices can be removed from the model due to topological restric-
tions of the algorithm, the method splits apart the polygons adjacent to a vertex. This allows
greater freedom in vertex removal, and thus allows the model to be further simplified. This
newer algorithm also tracks error bounds at vertices, allowing bounds to be put on the amount
of error incurred during simplification.

Garland and Heckbert demonstrated a topology-modifying simplification algorithm based on
a generalization of the edge collapse operator [8]. An edge collapse replaces two vertices that
share an edge with a single vertex, removing two triangles in the process. Their more general
vertez pair contraction operator merges together any two vertices, regardless of whether they
are joined by an edge or not. Garland and Heckbert use a quadric error metric to determine the
best vertex pair contraction during simplification. Popovic and Hoppe take a similar approach
to simplification, also using vertex pair contraction to reduce a model’s complexity [28]. They
use a cost function for a contraction that includes a measure of distance to the original surface
as well as a term that penalizes contractions that would merge vertices which have different
material properties.

El-Sana and Varshney use an approach that is inspired by alpha-hulls (a distance-controlled
portion of the Delaunay triangulation) to identify small holes and protrusions that can be
removed from a model [5]. Sharp edges are marked as candidates that are likely to surround a
hole. Then an alpha-prism is used to determine whether candidate hole is small enough to be
filled. Identified holes have their associated polygons removed and the boundary edges that are
created are filled using triangulation. They use the same process to identify and remove thin
structures that protrude from a model.

Quite a different approach is taken by He et al. to perform topology-modifying simplifications
of models[14]. They convert models into the volumetric domain, perform low-pass filtering, and
then use isosurface extraction to produce a new polygonal model. Low-pass filtering of the
volume model eliminates fine details such as thin tubes and surfaces, and also closes small holes
in the model. Unfortunately, low-pass filtering does not offer strict control over the topological
changes that are to be made to an object. For instance, a hole of radius r might be filled if the
hole is in the middle of an otherwise unbroken surface. A hole of the exact same size, however,
can help create a larger hole if it is near one or more additional holes. In addition, large, thin
surfaces of a model that should be retained can be accidentally eliminated by low-pass filtering.
Despite these shortcomings, the volumetric filtering method has much to recommend it. Inspired
by this approach, we created the new volumetric simplification method that we present in this

paper.
B. Vozelization

Converting a polygonal model into a volume is an integral step in our method, thus we briefly
review previous techniques that convert polygonal models into volumes. Wang and Kaufman use
a method that samples and filters the voxels in 3D space to produce alias-free 3D volume models
[33]. They place an appropriately shaped filter at the voxel centers and filter the geometric
primitives (e.g. polygons) that lie inside the region of support of the filter kernel, and this
produces the final density value for the voxel. This paper does not address how to determine

whether a point is interior to a collection of of polygons, an issue that needs to be addressed if
a solid rather than a thin-shelled model is to be created.

Huang et al. describe separability and minimality as two desirable features of a discrete
representation [16]. If a discrete surface is thick enough to prevent ray penetration it is said
to meet the separability condition. If it contains only those voxels that are indispensable for
separability then it also satisfies the minimality condition. They use bounding spheres around
vertices, bounding cylinders around edges and bounding planes around each edge of each polygon
to produce surfaces that meet both the separability and minimality conditions. The volumetric
representations produced by this method are thin-shelled.

Schroeder and Lorensen create volumetric models by calculating a distance map from the
input polygonal model [31]. Using this distance map they find the closest polygon to a given
voxel and use the polygon’s normal to classify the voxel as interior or exterior. They then use a
distance threshold to obtain an isosurface from this distance map. They use the resulting offset
surface to generate swept surfaces for the purpose of path planning for object assembly.

C. Model Repair

There are several different approaches that have been taken towards repairing polygonal mod-
els, including user-guided repair, crack identification and filling, and creating manifold connec-
tivity.

Several interactive systems have been proposed for fixing errors in polygonal models such as
cracks and T-joints. Two such systems that used manual intervention to repair architectural
models are described in [7] and [18]. Morvan and Fadel proposed a virtual environment in which
to perform user-directed repair for layered manufacturing [25]. Interactive techniques for model
repair becomes unattractive as the size of the models becomes large.

A number of other model repair methods have concentrated on automatic crack identification
and filling. Bohn and Wozny use Jordan curve construction and local hole filling to fix models
with cracks [3]. Barequet and Sharir describe a method for crack finding and filling by triangu-
lation [2], and Barequet and Kumar improve upon this method by sometimes shifting vertices
to eliminate cracks [1]. Murali and Funkhouser create a BSP-tree representation of a model and
then construct and solve a linear system of equations in order to determine which cells of the
BSP-tree are solid or non-solid [26].

A third approach to model repair is presented by Gueziec et al. [13]. The goal of their repair
method is to produce models that are everywhere manifold (perhaps with boundaries), and
they are not concerned with eliminating cracks or self-intersections. Their method separates
edges between polygons and then selectively stitches together some of these edges in a manner
that avoids non-manifold configurations. This method operates entirely upon the connectivity
between polygons and does not examine the 3D positions of the vertices.

All of the repair methods described above operate directly upon a polygon or half-space
description of a given model. The method of model repair that we present in this paper is
unique in that we convert a model into voxels in order to perform repair.

Now that we have reviewed the related work, we will describe the components of our model
manipulation pipeline for simplification and repair.

IV. PoLYGONS TO VOXELS

In order to use morphological operators to simplify topology, we must first voxelize the given
polygonal model. In this section we present two new methods of voxelization, the parity-count
and the ray-stabbing methods. At the end of this section we describe how voxelization provides
a simple method for performing model repair.

A voxel representation of a model is a regular grid of cells, in our case a rectilinear grid, in
which each cell (voxel) contains a density value in the range of zero to one. In this paper we
will use a voxel-value of zero to represent a portion of un-occupied space and a value of one to

Fig. 2. (a) Slice through a thin-shelled volumetric representation of a sphere, (b) Slice through a solid
volumetric representation of a sphere.

represent a voxel that is entirely interior to our model. Values between zero and one represent
voxels that are near the surface of an object.

As described above, there are several published methods for performing voxelization of poly-
gons [16],[31],[33]. Unfortunately, none of the published techniques are satisfactory for our needs.
For our purposes, the voxel representation should not be thin-shelled. A thin-shelled voxeliza-
tion of polygons is one in which only voxels that are near a polygon of the original model have
a non-zero voxel value. Thin-shelled voxelization is performed by finding the distance between
a given voxel and the nearest polygon [19, 33]. A thin-shelled representation of a sphere, for
instance, would contain non-zero voxels only near the sphere’s surface. Such a sphere would
have a large region of zero-valued voxels inside its boundary. Figure 2 (a) shows a slice through
such a thin-shelled sphere model. Performing isosurface extraction on such a model would pro-
duce a polygonal model that had two surfaces that are very near one other. In contrast, the
voxel models that we use have voxel values of one in the interior of the object so that isosurface
extraction yields a single surface. Figure 2(b) shows a slice through such a voxel model of a
sphere.

A. Parity Count

To produce voxel models with true interiors, the exterior/interior classification of a voxel must
take into account non-local aspects of the polygonal model. We will first discuss our parity count
method of voxel classification when used on manifold polygonal models that are water-tight (have
no cracks or boundaries). For such models, we classify a voxel V by counting the number of
times that a ray with its origin at the center of V intersects polygons of the model. An odd
number of intersections means that V is interior to the model, and an even number means it is
outside. This is simply the 3D extension to the parity count method of determining whether a
point is interior to a polygon in 2D. Note that for manifold models the direction of the ray is
unimportant, and we can take advantage of this to speed up the voxel classification. In essence,
we cast many parallel rays through the polygonal model, and each one of these rays classifies all
of the voxels along the ray. For an N x N x N volume, we need to cast only N X N rays, with
each ray passing through N voxel centers. Instead of using ray-tracing, however, we actually
use orthographic projection and polygon scan-conversion to create a “deep” z-buffer. Each pixel
in the z-buffer retains not just the nearest polygon, but a linked list of depth samples. Each of
these depth samples records an intersection with one polygon. Thus a “deep” pixel represents
one of the parallel rays that has been cast through the model. Each voxel behind a given pixel
can be rapidly classified by counting how many depth samples are behind or in front of the voxel
center. Figure 3(a) shows a 2D representation of this process. In this figure, each blue circle
represents a depth sample along a ray. Polygon scan-conversion takes advantage of incremental

P 3

A1
i . K
‘A ! m
"} 2 4
|] !
i .i
]
L
\
A J
3 a. Scan Converting a closed model 3 b. Scan Converting a model with a hole
using the parity count method.The black . The grey dots represents voxels for which
dots represent voxels that are inside the we do not know whether they are inside
model. The blue circles show where the or outside the model. Scan converting from
scanlines intersect the model. multiple directions solves this problem.

/s

) ¢

3 ¢. Scan Converting a model with 3 d. Scan Converting a double-walled
intersecting parts using parity count. model using parity count. This shows why
This is another instance where ray some models require the ray stabbing
stabbing yields better results. method.

Fig. 3. Scan-converting polygonal models with a variety of degeneracies.

calculations, so this process is much faster than a ray-tracing approach would be.

Although the parity count method works well for manifold models, many polygonal models
have various degeneracies that require us to modify the voxelization process. One common
problem is for a model to have small cracks or holes in the surface. The Stanford Bunny model,
for example, has several holes on its base, and the Utah Teapot contains a hole at the tip of
the spout. Figure 3(b) illustrates the problem. To voxelize such models, we extend the parity
count method by using k different directions of orthographic projection and by scan-converting
the model once for each direction. Each of the k projections votes on the classification of a voxel
(interior or exterior), and the majority vote is the voxel’s final classification. For water-tight
models, all of the votes will agree. This is not the case, however, for models that have a crack
through which a ray may pass. Rays that pass through a single crack or hole will have an odd
number of depth samples, and these rays are marked as invalid and do not vote. It can happen on
rare occasions that one ray will pass through two cracks, and this will cause the ray to improperly
classify many of the voxels. The majority voting between the directions of projection overrules
the voting of such rays. Typically we perform three orthographic projections, one in each of
the major axis directions. For troublesome models, we project in 13 directions, three along the

*8

major axes and 10 directions that are described by the surface normals of an icosahedron. By
choosing an odd number of projection directions we avoid having many ties in voting. Voting
ties can still occur due to invalid rays, and we mark such voxels as being exterior to the model.

Figures 4(a) and (d) are two views of the Stanford Bunny polygonal model, and (d) shows
the large holes in its base. Parts (b) and (e) show the result of using a single orthographic
projection for the parity count voxelization method. The holes in (b) and (e) are the result of
the algorithm classifying invalid columns of voxels (an odd number of ray intersections) as being
exterior to the model. Using 13 projections creates a water-tight model, shown in parts (c) and
(f) of Figure 4. This repaired model has none of the holes that were in the original model. In
addition to the bunny model, both the turbine blade and the chair models (Figures 6 and 9)
were voxelized using the parity count method.

We note that Lorensen and Schroeder also have converted polygonal models to voxel models
that have true interiors [31]. They find the closest polygon to a given voxel and classify the
voxel based on the polygon’s normal. Their method is tolerant of models with small cracks,
but it would produce poor results for polygonal models that are double-walled or that have
intersecting surfaces. We handle such models using our ray stabbing approach.

B. Ray Stabbing

Unfortunately, cracks and holes are not the only kind of troublesome degeneracies in polygonal
models. One other common problem is to have a model that is composed of several interpene-
trating sub-parts. This is often found in articulated figures of humans and animals, where each
limb or limb segment is a separate closed surface. For instance, an upper arm might be placed
so that portions of its surface are inside the torso. This is not a problem if we are just rendering
such a model. The parity count method, however, would incorrectly classify the overlapped
portions of the arm and torso as being outside of the model. Figure 3(c) shows an example
of two objects intersecting in this manner. Another common problem is to have a polygonal
model in which there is more than one polygon at or near the same location in space. This is
often the case for mechanical models where two sub-components are made exactly adjacent, but
where the shared surface is represented by polygons from both sub-components. Double walls
in building models are a similar problem. Such redundant polygons may cause problems for the
parity count method as well. Figure 3(d) shows that the parity count method would create an
empty interior for such a model. To voxelize this kind of model, we have created the ray-stabbing
method of voxel classification.

The ray-stabbing method also makes use of orthographic projections of a polygonal model. It
differs from the parity count method, however, in the way it interprets the depth samples of a
ray. The ray stabbing method only retains the first and last depth sample along each ray. In
effect, each ray only keeps those points of intersection where the ray first stabs the surface of
the model. By keeping both the first and last depth sample, this is equivalent to stabbing the
surface from two directions at once, at no extra cost. A voxel is classified by a ray to be interior
if the voxel lies between these two extreme depth samples, otherwise it is classified as an exterior
voxel. For a single direction of projection, this can cause some voxels to be mis-classified as being
interior to the surface. To avoid this, we perform several projection in different directions. If
any of the projections classify a voxel as exterior, it is given an exterior final classification. Only
those voxels that are classified as interior for all projections are given the final classification of
interior. Although reasonable voxel models result from three projections, we typically perform
13 projections for the ray-stabbing approach. Both the Al Capone and motor models of Figures 7
and 8 were voxelized using the ray stabbing method.

C. Polygonal Model Repair

We perform polygon repair by converting a model to a volumetric representation and then
converting it back to polygons using isosurface extraction. This produces an everywhere man-

sooed 9e5 L0l saoe4 026'vEl
(maip wopog) suonosaalp buluuess (maip wonog) uonodaaip bujuueoss sook |G¥'69
€1 Buisn Junod Ajlied Jo S)insay °} 8 auo Buisn Junod Ajied Jo sjinsay ‘o g (maip wopog) j9pon Auung 'p 8

saoe4 9€5° 101 saded 026'vEl
(maiA doy) suondadip bujuuess (maip doj) uonoaap buiuueoss saoe4 L G'69
€1 Buisn Junod Ajied Jo sjjnsay 0 8 auo Buisn Junod Ajlied Jo s)insay ‘q 8 (maIA do)) |opop Auung jeuibuQ ‘e 8

10

Types of Degeneracies
Parity Count | Ray Stabbing
Fixes T-Joints Y Y
Fixes Cracks / Holes Y N
Retains Interior Detail Y N
Merges Interpenetrating Surfaces N Y
Fixes Non-manifold edges and vertices Y Y

Table I. This table summarizes the types of degeneracies that the ray-stabbing and parity-count methods
are able to fix.

ifold polygonal model that is free of holes, cracks, T-joints, double walls and interpenetrating
polygons. The number of polygons produced by the conversion to and from the voxel domain is a
function of the resolution of the voxel representation. If the polygon count for the model should
be small, we reduce the number of polygons using standard polygon-based simplification. Our
polygon repair method uses the same basic pipeline of operations as our simplification approach,
but we skip the volumetric morphology step, as indicated by the dotted line shows in Figure 1.
Figure 7 shows an example of polygon repair of a model with a number of interpenetrating parts,
and Figure 4 illustrates repair of a model with several large holes.

The final results of polygon repair are significantly improved if proper sampling and anti-
aliasing are performed during voxelization. To do so, we use supersampling and filtering in our
implementation. We have implemented several filter kernels, and our best results are from a
Gaussian filter kernel with a radius of two voxels and a standard deviation of 0.7 voxels. For
an excellent survey of filter kernels for volume anti-aliasing, see [24]. We typically use 3 x 3 x 3
supersampling to achieve high quality results, but using 2 x 2 x 2 often produces results that
are quite acceptable.

It is left to the user to choose between the parity-count method and the ray-stabbing method
when repairing a given model. However, we can offer some guidelines on which method to use
based on the types of degeneracies that are present in the model to be repaired. If the model
does not have any interpenetrating parts, then the parity-count method should be used. As
shown in Table I, the parity count method is able to repair most of the commonly occuring
degeneracies in polygonal models such as non-manifold vertices and edges, T-joints etc. In the
case that the model does have interpenetrating parts, then the ray-stabbing method should be
used to eliminate them. Unfortunatly, neither the ray-stabbing nor the parity-count method can
deal with models that have small cracks and interpenetrating parts. One possibility that exists
in dealing with models like this is that the user can apply a polygon based model repair method
such as that presented in [13] to remove the cracks from the model. Once that has been done,
the ray-stabbing method can be then used to eliminate the interpenetrating parts of the model.

V. MORPHOLOGICAL OPERATIONS

The morphological operators constitute the heart of our topology simplification algorithm.
These operators are well suited to simplify the topology of objects because they present a clean
and efficient way to remove small features, close holes and join disconnected components of a
model. In addition, openings and closings provide precise tolerances so that the user can specify
the size of the feature to be removed or the size of the hole to be closed. Finally, because these
operations are done in the volume domain, we are able to recover a manifold mesh after the
topology simplification has taken place.

The first step in using morphological operators is the calculation of a distance map. Given a
binary volume that is classified into feature and non-feature voxels, a distance map associates
with each voxel the distance to the nearest feature voxel. Feature voxels are those that are
inside the object and non-feature voxels are those that lie outside the object. Feature voxels

11

have a distance map value of zero. We used Danielsson’s algorithm [4] to calculate the distance
map on our volumes. Specifically, we chose to implement the 4SED (four-point sequential
Euclidean distance mapping) algorithm proposed by Danielsson. This algorithm is fast, but it
is known to give slightly incorrect distances in some situations due to the fact that only the four
immediate neighbors of a pixel contribute to its distance value. However, Danielsson reports
that the absolute error in this case is less than 0.29 pixel units, which is quite acceptable for our
purposes. When more accuracy is necessary, the user may simply use a finer voxel grid.

Below, we explain how the algorithm works on 2D images, after which we give a brief outline
of how this is extended to 3D in order to create distance maps for volumes. Danielsson’s
2D algorithm produces a floating-point distance map that contains one scalar value per entry.
During the calculation of the distance map, the distances at each pixel are represented as two-
dimensional integer vectors. For a given pixel, its distance map vector gives the integer distance
in the z and y directions to the nearest feature pixel. The final step in the algorithm involves
calculating the magnitude of these vectors, yielding the final scalar floating-point distance map.

The 2D algorithm starts by assigning a distance of zero to all feature pixels and a value of
MAXVAL to the non-feature pixels. After the distance map is initialized, the image is scanned
from bottom to top (the j direction). A pixel’s distance map value changes if its distance
map value is greater than that of its neighbors. Thus distance map values propagate from the
sources of change (the feature pixels) to the non-feature pixels. For every j scan of the image,
new values are propagated left, right and from the row of pixels below. This bottom-to-top scan
only propagates information about a given feature pixel horizontally and upward. The image
is then scanned a second time, from top to bottom, so that the distance values are propagated
downward as well.

First loop of Danielsson’s algorithm (sweeping from bottom-to-top)

for j =1tody-1

Ezamine pizels below the current row
fori=0todx-1
———
if mag(D(i,5)) < mag(D(i,j —1)+<0,1>)
D(i,j) =D(,7-1)+<0,1>

Ezamine pizels to the left of each pizel in a row
fori=0todx-1
—
if mag(D(i,5)) < mag(D(i — 1,5) + < 1,0>)
D(i,j)=D(i—-1,7) +<1,0>

Ezamine pizels to the right of each pizel in a row
for i = dx - 2 downto 0
—_—— N
if mag(D(i,5)) < mag(D(i +1,7) + < 1,0>)

—

DG,j)=D@i+1,j)+<1,0>

The above pseudo-code is that of the bottom-to-top scan of an image. The second loop (top-
to-bottom scan of the image) of Danielsson’s 2D algorithm is similar to the loop shown above.
The extension of this algorithm to 3D involves applying Danielsson’s algorithm on a slice by slice
basis to the volume. There are two passes done through the volume: one each in the forward
and backward directions in the k dimension. For each of these passes, the distance map for each
slice is calculated as described above. In 3D, a voxel’s distance map value is calculated from the
distance map values of its six immediate neighbors.

The two atomic morphological operations are erosion and dilation. They take as input the

12

(a) (b)

Fig. 5. (a) Slice through voxelized motor, (b) distance map, (c) dilation, (d) erosion.

(c) (d)

volume, the distance map and an erosion/dilation distance. For dilation, we look through the
distance map, and any non-feature voxel that has distance less than or equal to the threshold is
turned into a feature voxel. Erosion is the complement of dilation. In this case, we negate the
volume (i.e. a feature voxel becomes non-feature and vice versa), calculate the distance map,
and then perform a dilation. After this, the volume is negated again to obtain the final result.
These basic morphological operations are commonly used in image processing (17].

Figure 5 shows the results of applying erosion and dilation to a 2D image. Figure 5 (a) shows
the original image. This is a slice of the volumetric description of the motor model. Figure 5
(b) shows a colorized distance map in which the colors indicate the distance of a pixel from the
surface. Near the surface the blue color indicates a small distance, while the red color indicates
a large distance. The colors cycle at greater distances. Using this distance map, we performed
dilation and erosion on the image. Figure 5 (c) shows the result of performing dilation on the
input image. It demonstrates how dilation will close small holes and join previously unconnected
parts of the input image. The result of performing erosion is shown in figure 5 (d). Erosion
eliminates thin structures and increases the distance separating two unconnected parts of the
image.

While useful by themselves, erosion and dilation are usually used in conjunction with each
other. The reason is that if they are used in isolation, then they increase (in the case of a
dilation) or decrease (in the case of an erosion) the bounds of the volume. When an erosion is
done followed by a dilation, it is called an opening. This is due to the fact that this operation will
widen holes, eliminate small features and disconnect parts of the model that are connected by
thin structures. The complement of this operation is a closing, which is a dilation followed by an
erosion. This will close holes and connect previously disconnected parts of the model. There is a
connection between the resolution at which a polygon model is scan-converted, and the distance
parameter that is used by the morphological operators to simplify the volumetric description
of the input polygonal model. The size of features such as tunnels and thin-structures grows
larger in the volumetric description as the scan-conversion resolution is increased. Therefore the
distance parameter used by the morphological operators to eliminate such features must also be
increased. In our experiments, we have found that the polygon model should be scan-converted
at approximatley 10 times the distance value used by the morphological operators. Notice that
if erosion or an opening is performed on a thin-shelled volume model, the erosion will completely
destroy the surface. This is another reason we require that our voxelization process not produce
a thin-shelled volumetric representation.

13

VI. POLYGONAL MODEL CREATION AND TRIANGLE COUNT REDUCTION

Now that we have seen how to remove small features using volumetric morphology, we turn
our attention to converting the model back to polygons. There are two steps involved in this:
isosurface extraction and polygon simplification.

A. Isosurface Ezxtraction

To create a manifold polygonal model, we extract an isosurface from our volumetric represen-
tation of the model. We do this using the a modified version of the standard Marching cubes
algorithm [21]. This algorithm works by examining the eight adjacent voxels at the corners of
a cube. Using a threshold value, the corners of this cube are classified as being either inside
or outside the surface. This classification scheme yields 256 possible configurations. A lookup
table is used to generate triangles within a cube based on the configuration of its corners. The
Marching Cubes algorithm can produce up to 11 triangles from each cube. The original algo-
rithm proposed in [21] produces ill-formed isosurfaces in some cases. We use the modifications
to Marching Cubes proposed in [?] to extract isosurfaces that are everywhere manifold.

As shown in Figure 1, there are two possible paths through our simplification pipeline: one
where volumetric morphology is performed, and the other where we extract the isosurface di-
rectly after scan converting the input polygonal model into a volumetric representation. We
omit the morphology stage if our goal is either to repair a polygonal model or to eliminate its
interior detail. If no morphological operations are performed, then the resulting isosurface is
smooth. This results from the fact that during scan conversion we use supersampling to obtain
voxel values that vary between 0 and 1. On the other hand, because morphological operations
act on binary volumes, the isosurfaces extracted after volume morphology have voxelization
artifacts. We use Taubin’s smoothing technique to reduce these artifacts {32]. Taubin uses a
low-pass filter over the position of the vertices to create a new surface that is smoother than the
original. One of the design goals of this smoothing method was that it be able to reduce the
voxelization artifacts that are introduced during the voxelization stage. Gortler et al. use the
same method in The Lumigraph to smooth polygonal models that they produce via isosurface
extraction [12].

B. Triangle Count Reduction

The isosurface we extract usually has simpler topology than the input model. In addition,
because the Marching cubes algorithm considers cubes in isolation, it frequently over tessellates
the surface. These two properties of the isosurface allow us to drastically reduce its triangle
count without degrading the model’s quality. To achieve this end, we use Garland and Heckbert's
polygon-based simplification method that is guided by a quadric error measure [8]. We use their
method because it is efficient and produces high quality results. Garland and Heckbert use the
planes passing through a vertex to estimate the amount of error introduced by an edge collapse.
As discussed in the Section 3, their simplification process is based on a generalized form of the
edge collapse operation called vertex pair contraction. A vertex merge may join together two
vertices that do not share an edge, altering the topology of a model. Since we have already
performed topological modifications using volumetric morphology, we only allow the merging of
vertices that share an edge when using their simplification method. One consequence of using
this edge-collapse based simplification method to reduce the triangle count of the isosurface
is that as this technique does not gaurentee the preservation of the volume of a model, the
simplified /repaired meshes are smaller in size than the original model.

When volume morphology is used to simplify the topology of an object, the resulting volume
typically has no small holes, interior details, or tunnels. Thus all the polygons of the resulting
isosurface can be used to represent the exterior surface of the object. This enables us to reduce
the triangle count of a given model to much lower levels than would have been possible with the

. 14

original model.

In order to maintain the color of a given model, we record the color values of the polygonal
model during voxelization. These color values are associated with surface voxels. Surface voxels
are those that intersect a polygon of the input model. During scan conversion, when we detect
the intersection of a polygon with a voxel we record the color of the polygon and associate
it with the voxel that the polygon intersects. These color values are then carried through
the rest of the simplification pipeline. During the morphology stage, we process a volumetric
representation of an object that has color by dividing the morphological operations into two
steps. In the first step, a distance map is calculated based on the density values. This distance
map is then used to perform either the opening or closing operation. After the morphological
operations have been performed on the density values, a second distance map is calculated using
the color voxels. This distance map is used to find the color of the nearest surface voxel to
each voxel in the volume. The density volume and the color volume are combined to form the
new volumetric representation of the input polygonal model. The next step in the simplification
pipeline is isosurface extraction. Here, we extend the Marching Cubes algorithm to take into
account color when generating triangles. In our version of the Marching Cubes algorithm, we
simply interpolate the color values associated with voxels when we are generating triangles
within a cube. These interpolated color values are then associated with the triangles that are
generated. The final step in our simplification algorithm is triangle count reduction. In this
step, we use Garland and Heckbert’s newer simplification method that preserves the color of the
original surface [9]. This extension to their previous algorithm simplifies meshes that have color
associated with the vertices by adding the red, green and blue color coordinates to the quadric
error measure.

VII. RESULTS

Figures 6-9 show the results of our algorithm on four models. The model of Figure 6 is a CT
scan of a turbine blade. This model poses a challenge to most simplification algorithms due to
its size, fine interior detail and complex topology (small holes, thin tunnels etc.) Many methods
cannot simplify this model beyond a certain point because of its complex topology. Part (a)
of Figure 6 shows the original model, part (b) is a volume rendering of the voxelized model,
and part (c) shows the model after morphological closing and isosurface extraction. Parts (d)
and (f) show the surface after the polygon reduction stage. For comparison to part (d), the
effect of using Garland and Heckbert’s quadric simplification method alone is shown in part (e).
As can be seem from the images, our approach retains more details than Qslim (Garland and
Heckbert’s method) alone for the same number of faces in the simplified model. We note that
there are many parameters for Garland and Heckbert’s method. For fairness, we use the same
choice of parameters to produce both parts (d) and (e). (Recall that Qslim is a component of
our simplification pipeline.)

Figure 7 demonstrates our approach on a model of Al Capone. This hand-constructed model
has fifteen interpenetrating parts. The head, arms and legs continue into the torso region, as
can be seen by the darker regions in the wireframe rendering of part (d). In addition, this model
also has color, which is an attribute that we preserve during the simplification and repair. For
this model we do not perform any morphology on the model, but instead recover an isosurface
after the model has been scan-converted. The resulting isosurface has no intersecting parts and
is everywhere manifold. This guarantees that the different body parts will not become disjoint
from one another when the object is simplified, as shown in parts (c) and (f). After the isosurface
was extracted, we reduced its triangle count to match that of the input model. The resulting
surface can be seen in parts (b) and (e) of the figure.

Figure 8 demonstrates simplification of a car motor. This model contains many degeneracies
such as T-joints, zero-area faces and non-manifold vertices. In addition, the motor model has
interesting topology in that there are a number of parts connected by thin structures and a

s6984 005 sede4 002'2 saoed 002'2
[9pow payiduis 3 v wyso Aq payidwis [9pow 2 ¢ |opol payidwis p ¥

seded 860'8.G PP
Buisojd S|9XOA 28EX00EXEY9 sa0ed 268'9¢2L' |
jesibojoydiopy 191je doBUNSOS| O ¢ (paiapuai awn|oA) |9POW PBZIIBXOA 'q [9POW ape|g auiqiny eulblQ e v

sade4 9/¥'El seoed 9/v'cl
saoe 098 (soepINS pjojiuew smoys) (sued Bunoasiajul sMoys)
[opow payiidwis 3 § [9pO|N pasieday Jo aweydIIM @ § [opo [eutblQ jo awesjaaMm P S

seoed |2/t seoed 9/1'¢€l seoeq 9/¥'cl
[9poN payidwis "0 § |[opoW pasteday 'q § jopop auode) v jeulbuQ ‘e §

17

6 a. Original Motor Model 6 b. Simplified Model
140,113 Faces 5,000 Faces

6 c. Simplified Model 6 d. Model Simplifiedby Qslim
3,300 Faces 3,300 Faces

Fig. 8.

+ 18

Fig. 9. (a) Original Chair Model (3,261 faces), (b) Simplified Model (170 faces).

lot of interior detail. Again in the comparison with Qslim, our method retains more detail at
comparable levels of complexity.

Figure 9 shows simplification of a model chair. This model demonstrates the topology modifi-
cation capabilities of our algorithm. Our approach closes the holes that are present in the back
and the seat of the model. We do not know of any other simplification algorithms that would
smoothly join the slats of the chair into a single component and produce a manifold surface.

The results shown in these figures illustrate the improvement that our morphological opera-
tors make when used in conjunction with Garland and Heckbert’s polygon-based simplification
approach. We believe that similar benefits will result if our morphological technique is used in
conjunction with any other polygon-based method. Many polygon-based simplification methods
are affected during the later stages of simplification by small features that were present in the
original model, even if those features have been removed by the simplification process. The
memory of such small features are often used in distance measures that help guide the simpli-
fication process, such as are used in [8, 15]. Other simplification methods such as [20, 31} do
not measure distances based on the original geometry, but are still influenced by the original
topological features such as small holes. The benefit of the morphological stage of our pipeline is
that it produces models in which the small features are completely absent. When morphological
changes are performed before polygonal simplification, the polygon-based simplification stage
never needs to be concerned with the small features in any way. The polygon-based method is
never penalized for creating a surface that is distant from the small features because it never
has knowledge of these small features. This results in better simplified models.

Table II shows the timing results for each stage of the simplification pipeline. Table III
contains the sizes of the different representations of a model as it moves through the pipeline.
To collect timing statistics that reflect all of the stages of the pipeline, we performed an extreme
amount of simplification on all of the models- simplifying each model down to two hundred
faces. (Note that these 200 face models are not the models shown in the figures.) When the
input model contains a large number of faces, then voxelization is the most time consuming
stage of the pipeline. This is evident from the timing results of the turbine blade model where
voxelization accounted for 78% of the total time required to simplify the model. In other cases,
most of the stages in the simplification pipeline took about the same amount of time. By way
of comparison, we note that it took Qslim 4:08 minutes to simplify the blade down to 200

19

Simplification Pipeline Timing (minutes)

Voxelization | Morphology | Isosurface | Smoothing Triangle Total
Extraction Count Reduction
Blade | 19.06 (78 %) | 1.03 (4 %) | 0.76 (3%) | 1.9 (8 %) 1.6 (7 %) 24.35 (100 %)
Motor | 2.6 (29 %) * 0.63 (7 %) | 3.63 (41 %) 2.02 (23 %) 8.88 (100 %)
Al 9.7 (47 %) * 1.7 (8%) | 3.4 (17 %) 5.7 (28 %) 20.46 (100 %)
Chair | 0.9 (25 %) 09(25%) |[04(11%) | 0.9 (25 %) 0.5 (14 %) 3.6 (100 %)

Table II. This table shows the timing information for each stage of our simplification pipeline. All the
timing measurements were taken on a 4 processor SGI Onyx with 1 Gigabyte of main memory.

Dimensions of Models
Original Volume Isosurface Simplified
Model (# faces) | Representation | (# faces) | Model (# faces)
Blade 1,729,892 268x128x161 578,098 200
Motor 140,113 386x256x197 177,158 200
Al 13,476 107x256x276 489,552 200
Chair 1,087 153x128x150 32,750 200

Table III. This table contains the sizes of the polygonal models as they move through the simplification
pipeline. Table II above, gives the timing information for these model sizes.

polygons and 15 seconds to simplify the motor model. As reported in [20], Qslim is one of the
fastest published simplification algorithms. Therefore it is not surprising to see it perform so
well on these models. However, we believe that the increased quality of the simplified models
that are obtained by performing the topology modification in the volumetric domain versus
running Qslim on the original polygonal models justifies the additional time required by our
simplification pipeline.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have introduced a new surface simplification technique that makes use of
morphological operations in the volume domain to simplify the topology of an object. Specific
advantages of the simplification method include:

« Performs controlled topology modification, allowing extreme simplification.
« Accepts arbitrary collections of polygons as input.

o Produces manifold meshes as output.

« Preserves surface attributes such as color.

A benefit of converting the input polygonal models into volumes is that we can repair a
number of degeneracies in polygonal models. This model repair method is simple to program
and it produces clean models that are everywhere manifold.

There are several possible avenues for future research. The erosion operator eliminates thin
surfaces, thus large thin parts of the model can be eliminated resulting in a large perceptual
error. For this reason we always perform dilation before erosion (which together are an opening),
but we are investigating possible solutions to this issue. One are of future research would be to
extend the morphological operators so that the distance parameter would vary in different parts
of the surface. This would allow models that have thin structures to be processed by the erosion
operator. Another future direction would be to extend other 2D image processing techniques
into 3D, possibly resulting in other new and useful methods of manipulating volumetric models.

o *20

IX. ACKNOWLEDGEMENTS

We thank the many people at Georgia Tech who have helped and encouraged us. This work

was funded by ONR grant N00014-97-1-0223.

(1]
[2]

(4]
(5]

(6]
{7
(8]

[10]

(11]

(12]

[13]

(14]
[15]
(16]

[17)
[18]

[19]
[20]
(21]
i [22]

(24]
‘ (23]
(26]

(27]

REFERENCES

BAREQUET, G. and KUMAR, S. Repairing CAD Models. In Proceedings of IEEE Visualization ’97, October
19-24, 1997, pp. 363-370.

BAREQUET, G. and SHARIR, M. Filling Gaps in the Boundary of a Polyhedron. Computer Aided Geometric
Design, Vol. 12, No. 2, 1995, pp. 207-229.

BomN, J.H. and WozNy, M.J. A Topology-Based Approach for Shell-Closure. In Geometric Modeling for
Product Realization, Edited by P.R. Wilson et al, North-Holland, 1993, pp. 297-319.

DaNIELSSON, P. Euclidean Distance Mapping. Computer Graphics and Image Processing, Vol. 14, 1980.
EL-SANA, J. and VARSHNEY, A. Controlled Simplification of Genus for Polygonal Models. In Proceedings of
the IEEE Visualization., August, 1997.

EL-SANA, J. and VARSHNEY, A. Topology Simplification for Polygonal Virtual Environments. In IEEE
Transactions on Visualization and Computer Graphics, Vol. 4, No. 2, June 1998, pp 133 - 144.

ERIKSON, C. Error Correction of a Large Architectural Model: The Henderson County Courthouse. Technical
Report TR95-013, Dept. of Computer Science, University of North Carolina at Chapel Hill, 1995.
GARLAND, M. and HECKBERT, P. S. Surface Simplification using Quadric Error Metrics. Proceedings of
SIGGRAPH 97. In Computer Graphics Proceedings, Annual Conference Series, 1997, ACM SIGGRAPH, pp.
209-216.

GARLAND, M. and HECKBERT, P. S. Simplifying Surfaces with Color and Texture using Quadric Error
Metrics. In IEEE Visualization ’98 Proceedings, October 1998, pp. 263-269.

GELDER, ALLEN VAN and WILHELMS, JANE Topological Considerations in Isosurface Generation IEEE
Transactions on Graphics, Vol. 13, No. 4, November 1994, pp. 337-375.

SHADE, JONATHAN, GORTLER, STEVEN. J, HE, LI-WEI , and SzELISKI, RICHARD Layered Depth Images
Proceedings of SIGGRAPH 98. In Computer Graphics Proceedings, Annual Conference Series, 1998, ACM
SIGGRAPH, pp. 209-216.

GORTLER, S.J., GRZESZCZUK, R., SzELISKI. R., and COHEN. M.F. The Lumigraph. In SIGGRAPH ’96
Proc., August, 1996,pp. 43-54.

GUEZIEC, A., TAUBIN, G., Lazarus. F., and HorRN. W. Converting Sets of Polygons to Manifold Surfaces
by Cutting and Stitching. In Proceedings IEEE Visualization 1998., Research Triangle Park, North Carolina,
October 18-23, 1998, pp. 383-390.

HEe, L. HonG, KAUFMAN, A.E., VARSHNEY, A. and WANG, S. Voxel-Based Object Simplification, JEEE
Visualization 95 Proceedings, October 1995.

HoprprE, H. Progressive Meshes. Proceedings of SSIGGRAPH 96. In Computer Graphics Proceedings, Annual
Conference Series, 1996, ACM SIGGRAPH, pp. 99-108.

Huang, J., YAGEL, R., FiLiprPov, V. and KURZION. Y. An Accurate Method for Voxelizing Polygonal
Meshes. In Symposium of Volume Visualization, 1998.

JAIN, A. Fundamentals of Digital Image Processing, Englewood Cliffs, New Jersey, Prentice-Hall Inc., 1989.
KHORRAMABDI, D. A Walk Through the Planned CS Building. Technical Report UCB/CSD 91/652, Com-
puter Science Department, University of California at Berkeley, 1991.

LEvoy, M. A Hybrid Ray Tracer for Rendering Polygon and Volume Data IEEE Computer Graphics and
Applications, Vol. 10, No. 2, March, 1990.

LINDSTROM, P. and TURK, G. Evaluation of Memoryless Simplification. In IEEE Transactions on Visual-
ization and Computer Graphics, Vol. 5, No. 2, April-June 1999, pp 98 - 115.

LORENSEN, W.E. and CLINE, H.E. Marching cubes: A high resolution 3-d surface construction algorithm.
Proceedings of SIGGRAPH 87. In Computer Graphics, July, 1987.

Low, Kok-LiM and TaN, Tiow-SENG Model Simplification using Vertex-Clustering. In Interactive 3D
Graphics, Providence, Rhode Island, April 27-30, 1997, pp. 75-81.

LUEBKE, D. and ERiksoN, C. View-Dependent Simplification of Arbitrary Polygonal Environments. Pro-
ceedings of SIGGRAPH 97. In Computer Graphics, August 1997.

MARSCHNER, S.R. and LoBB, R.J. An Evaluation of Reconstruction Filters for Volume Rendering. In IEEE
Proceedings of Visualization ’94, Washington, D.C., October 17-21, 1994, pp. 100-107.

MORVAN, S.M. and FADEL, G.M. IVECS: An Interactive Virtual Environment for the Correction of .STL
files. In Conference on Virtual Design, University of California at Irvine, August 1996.

MURALI, T. M. and FUNKHOUSER, T. Consistent Solid and Boundary Representations from Arbitrary Polyg-
onal Data. In Proceedings 1997 Symposium on Interactive 3D Graphics, Providence, Rhode Island, April
27-30, 1997, pp. 155-162.

ROSSIGNAC, J. and BORREL, P. Multi-resolution 3D approximations for rendering complex scenes. Modeling
in Computer Graphics: Methods and Applications, June, 1993.

21

[28] Popovic, J. and HoPPE, H. Progressive Simplicial Complexes. Proceedings of SIGGRAPH 97. In Computer
Graphics, August 1997.

[29] SCHROEDER, W. J., ZARGE, J. A., and LORENSEN, W. E. Decimation of Triangle Meshes. Proceedings of
SIGGRAPH 92. In Computer Graphics, July 1992, pp. 65-70.

[30] ScHROEDER, W. J. A Topology Modifying Progressive Decimation Algorithm. In IEEE Visualization ’97
Proceedings, October 1997, pp. 205-212.

[31) ScHROEDER, W. J. and LORENSEN, W. E. Implicit Modeling of Swept Surfaces and Volumes, In Proceedings
of Visualization 94, Washington, D.C., October 17-21, 1994, pp. 40-45.

[32] TauBIN, G. A Signal Processing Approach To Fair Surface Design. Proceedings of SIGGRAPH 95. In Com-
puter Graphics, July 1995, pp. 351-358.

[33] WaNG, S. and KAUFMAN, A.E. Volume Sampled Voxelization of Geometric Primitives, IEEE Visualization
'98 Proceedings, IEEE Computer Society Press October, 1993.

o 1

Volumetric Representation and Manipulation
of Geometric Models

Principal Investigator: Greg Turk, Georgia Institute of Technology

I. INTRODUCTION AND PROJECT GOALS

This is the final report of the work that was funded by the ONR contract number N00014-97-
1-0223.

The goal of this research project was to investigate new methods of representing and manip-
ulating three-dimensional geometric models using volumetric techniques. Three sub-areas were
particular targets for these investigations: 1) explore ways of extending the kinds of models that
can be represented volumetrically, 2) create multiresolution models using volume techniques,
and 3) perform shape transformation using a volumetric framework. Several application areas
that are important to ONR should benefit from this research, including:

« Flight simulators

o Walkthroughs of large buildings and vehicles

« Comparison between model organs and possibly damaged tissue
« Reconstruction of medical data from CT and MRI slices

The remainder of this report details the research successes in each of the three sub-areas, as
well as additional products of the project that were not foreseen in the original proposal.

II. REPRESENTING MODELS AS VOLUMES

One of the earliest aspects of the research into volumetric methods that we explored was the
issue of what 3D models could be represented as volumes. In particular, many 3D models do
not originally come in a volumetric form, but rather are represented by other methods such
as polygons. Over the course of our investigations, we came up with two distinct methods of
converting polygonal models into volumetric representations.

Our first method of converting polygonal models to volumetric models is based on creating an
implicit function from the surface points on a model. First, a relatively sparse set of constraint
points are identified on the polygonal surface, along with some surface normal constraints. These
constraints are then used to create an implicit function using radial basis functions that naturally
minimize the curvature of the function being created. The implicit surface of this function is
a first approximation to the original model. Places where the two models differ are identified,
and more constraints are placed at these locations. Another implicit surfaces is created, this

Fig. 1. Conversion from polygons to implicit volume models.

2

2 a. Original Bunny Model (Top View) 2 b. Results of Parity count using one 2 ¢. Results of Parity count using 13
69,451 Faces scanning direction (Top View) scanning directions (Top View)
134,920 Faces 101,536 Faces

2 d. Bunny Model (Bottom View) 2 e. Results of Parity count using one 2 {. Results of Parity count using 13
69,451 Faces scanning direction (Bottom View scanning directions (Bottom View)
134,920 Faces 101,536 Faces

Fig. 2. Converting polygonal models with holes to a volumetric model.

time that is a better match to the original polygonal data. This process repeats until the user-
supplied tolerance values are met. Figure 1 (far left) shows an original model of the bones in a
human’s foot, and the second image in this figure shows the implicit surface representation of
the same model. The third image in this figure is a much more detailed polygonal model, and
the far right image is the implicit representation of this surface. The input model is far more
complex (over one million polygons) than previous methods have been able to use in creating
an implicit volumetric representations from polygons. This method is described in [4], and is a
technical report and is also currently in review for the IEEE Transactions on Visualization and
Computer Graphics.

Our second method of converting polygon models to voxels was based on the idea of counting
the number of intersections that a ray makes with the surface of a model. If a ray from a given
point P intersects the model’s surface an even number of times, then P is probably outside the
object. If there are an odd number of intersections, P is likely to be inside. Using polygon scan
conversion, we in effect cast many rays from many directions through the model, and collect
together votes on whether a given point is likely to be interior. This method allows us to avoid
problems such as cracks and holes in the model that cause other voxelization methods to fail.
For example, the bunny model shown in Figure 2a and 2d has a number of holes in the bottom.

3 a. Origina Turbine Blade Model 3 b. Voxelized Model (Volume rendered) 3 c. Isosurface after Morphological

1,726,892 Faces 643x300x382 Voxels closing
578,098 Faces

3 d. Simplified Model 3 e. Model Simplified by Qslim 3 1. Simplified Mode!
2,200 Faces 2,200 Faces 500 Faces

Fig. 3. Simplification of an engine turbine blade model.

If we use information from just a single direction, then these holes appear in the volumetric
version of the model (Figure 2b and 2e). If, on the other hand, we collect ray intersection
information from several directions, the holes are disregarded and the final model (Figures 2c
and 2f) have no holes. This approach was described in [2], which is accepted for publication in
the IEEE Transactions on Visualization and Computer Graphics.

The two main areas that stand to benefit from these new techniques are medical diagnosis and
mechanical design. The implicit volumetric models are far smaller than the polygonal models,
and medical data on wounded personnel could be rapidly transmitted to a medical expert at
a remote location. Many CAD models of mechanical components are currently represented in
polygonal form. Instead of painstakingly converting these models to volumetric representations
by hand, our methods could be used to convert these models directly. Because of the robustness
of our conversion method, even models that have significant numbers of geometric degeneracies
(t-junctions, holes, cracks, interpenetrating parts) can be converted to volumes.

II11. MULTIRESOLUTION MODELS

There are many published methods of creating multiresolution models, but most or all of
these methods begin to break down at very low resolutions. When a complex model is being
viewed from a distance (e.g. when simulating a fly-over a convoy of trucks), the exact details of
each model is not important, but the frame-rate of the simulator is critical. We have created a

4.

level-of-detail algorithm that produces very good models even at extremely low polygon counts.
Our method relies on volumetric operations, and in particular on 3D morphology.

Our approach is to convert a given model into a volumetric representation (using methods we
described earlier), and then to perform volume morphology on these models. The morphological
operation that we use is the “close” operator, which closes up small holes and fuses together
objects that are extremely near to one another. These small topological changes are not visible
when the model is far from the viewer, but they allow these objects to be greatly simplified.
Once the morphological operation has been performed, the model is then converted back into
polygons (using marching cubes), and then is simplified using traditional polygon simplification
methods. The topological simplification that the closing operator changes the nature of the
models so that much more aggressive simplification may be performed and still result in visually
high-fidelity models. Figure 3 illustrates this form of simplification on a turbine blade model
that begins with approximately 1.7 million polygons. Even the 500 polygon model retains much
of the shape of the original object. This method is described in [2].

IV. SHAPE TRANSFORMATION

The goal of shape transformation is, given two shapes, to produce a sequence of shapes that
smoothly transitions from the first shape to the second one. Our approach to shape transfor-
mation was to construct a four-dimensional volumetric function that encapsulated the entire
sequence of shapes. Two of the 3D slices of this 4D function (at w = 0 and w = 1) would
produce the given shapes, and intermediate slices (0 < w < 1) give intermediate shapes in
the sequence. The manner in which we create this 4D function is to use a higher-dimensional
generalization of thin-plate interpolation, a method usually used to solve 2D scattered data
interpolation problems. The constraints given to this interpolation approach come from the

Fig. 4. Shape transformation between knot and human fist, showing that topology changes are easy to

perform.

Fig. 5. Surface reconstruction of hip joint from parallel (top) and non-parallel slices (bottom).

vertices and the surface normals of the two given objects. This method produces results such
as that shown in Figure 4, in which a shape transformation sequence is shown between mod-
els with different topologies. Our method was published in the SIGGRAPH 1999 conference
proceedings [3].

Shape transformation has several important applications, including creation of smooth joins
between surfaces for mechanical design and also for the creation of surfaces from CT and MRI
medical data. The 2D shape interpolation problem is just another form of contour interpolation
from 2D slices. Previous methods of contour interpolation require that the slices be in planes
that are all parallel to one another. Our own method allows the planes to be non-parallel and
even allows the planes to intersect one another. Figure 5 shows an example of this, where the
slices are of a person’s hip bone. This opens up the possibility of acquiring medical data in a
much less restricted environment, such as a hand-held scanning device that may be taken to
remote locations.

V. VISUALIZATION OF HIDDEN SURFACES

In addition to the three sub-areas described above, our research also yielded a new visualization
technique that we did not anticipate at the start of our research. We have found that volumetric
techniques that are similar to those we used to convert polygons to voxels could also be used
to identify those portions of a model that are hidden from view. This provides an automatic
way in which to tag hidden surfaces, allowing the outer surfaces to be marked as translucent in
order to show the interior of an object. Our technique consists of converting a polygonal model
into a volumetric representation, morphologically closing holes and then identifying interior and
exterior portions of the surface using ray voting. Figure 6 illustrates this technique with a motor.
The left portion of this figure shows an opaque view of the model, and the right image shows the
visualization of this model using our interior/exterior classification method. This new method
was published in the Visualization 2000 conference proceedings [1]. This automatic method
of visualization is particularly applicable to examining medical data and mechanical parts for

CAD.

Fig. 6. Visualization of hidden surfaces in a motor.

VI. CONCLUSION

Our research in volumetric representations has led to several new computer graphics tech-
niques that are likely to be useful for a number of applications. Particular applications that
are of interest to ONR include visualization and surface reconstruction for medicine, design and
visualization of CAD models, and simplification of models for flight and walkthrough simulators.

REFERENCES
[1] Nooruddin, F. 8. and Greg Turk “Interior/Exterior Classification of Polygonal Models,” Visualization 2000 Conference
Proceedings, Salt Lake City, Utah, October 2000.

[2] Nooruddin, F. 8. and Greg Turk “Simplification and Repair of Polygonal Models Using Volumetric Techniques,” to
appear, IEEE Transactions on Visualization and Computer Graphics.

[3] Turk, Greg and James O’Brien, “Shape Transformation Using Variational Implicit Functions,” Computer Graphics
Proceedings, Annual Conference Series (SIGGRAPH 99), August 1999, pp. 335-342.

[4] Yngve, Gary and Greg Turk “Robust Creation of Implicit Surfaces from Polygonal Meshes,” in review, IEEE Trans-
actions on Visualization and Computer Graphics.

Greg Turk

Shape Transformation Using Variational Implicit Functions

James F. O’Brien

Georgia Institute of Technology

Abstract

Traditionally, shape transformation using implicit functions is per-
formed in two distinct steps: 1) creating two implicit functions,
and 2) interpolating between these two functions. We present a
new shape transformation method that combines these two tasks
into a single step. We create a transformation between two N-
dimensional objects by casting this as a scattered data interpolation
problem in N + I dimensions. For the case of 2D shapes, we place
all of our data constraints within two planes, one for each shape.
These planes are placed parallel to one another in 3D. Zero-valued
constraints specify the locations of shape boundaries and positive-
valued constraints are placed along the normal direction in towards
the center of the shape. We then invoke a variational interpolation
technique (the 3D generalization of thin-plate interpolation), and
this yields a single implicit function in 3D. Intermediate shapes are
simply the zero-valued contours of 2D slices through this 3D func-
tion. Shape transformation between 3D shapes can be performed
similarly by solving a 4D interpolation problem. To our knowledge,
ours is the first shape transformation method to unify the tasks of
implicit function creation and interpolation. The transformations
produced by this method appear smooth and natural, even between
objects of differing topologies. If desired, one or more additional
shapes may be introduced that influence the intermediate shapes in
asequence. Our method can also reconstruct surfaces from multiple
slices that are not restricted to being parallel to one another.

CR Categories: 1.3.5 [Computer Graphics]): Computational Ge-
ometry and Object Modeling—surfaces and object representations

Keywords: Shape transformation, shape morphing, contour inter-
polation, implicit surfaces, thin-plate techniques.

1 Introduction

The shape transformation problem can be stated as follows: Given
two shapes A and B, construct a sequence of intermediate shapes
so that adjacent pairs in the sequence are geometrically close to one
another. Playing the resulting sequence of shapes as an animation
would show object A deforming into object B. Sequences of 2D
shapes can be thought of as slices through a 3D surface, as shown in
Figure 1. Shape transformation can be performed between objects
of any dimension, although 2D and 3D shapes are by far the most
common cases. Shape transformation has applications in medicine,
computer aided design, and special effects creation. We give an
overview of these three applications below.

One important application of shape transformation in medicine is
contour interpolation. Non-invasive imaging techniques often col-

turk@cc.gatech.edu, job@acm.org.

Figure 1: Visualization of transformation between X and O shapes.
Top and bottom planes contain constraints for the two shapes.
Translucent surface is the isosurface of a 3D variational implicit
function, and slices through it give intermediate shapes.

lect data about a patient’s internal anatomy in “slices” of a particu-
lar size such as 512 x 512 samples. Usually many fewer slices are
taken along the third dimension so that a resulting volume might,
for example, be sampled at 512 x 512 x 30 resolution. To recon-
struct a 3D model of a particular organ, the samples are segmented
to create shapes (contours) within the slices. Intermediate shapes
are then created between slices in the sparsely sampled dimension.
The reconstructed 3D object is formed by stacking together the
original and the interpolated contours. This is an example of 2D
shape transformation.

Shape transformation can also be a useful tool in computer aided
geometric design. Consider the problem of creating a join between
two metal parts with different cross-sections. It is important for the
connecting surface to be smooth because those places with sharp
ridges or creases are the locations that are most likely to form
cracks. The intermediate surface joining the two parts can be cre-
ated using shape transformation, much in the same way as with
contour interpolation for medical imaging. Because of the smooth-
ness properties of variational interpolation methods, we consider
them a natural tool to explore for shape transformation in CAD.

Finally, animated shape transformations have been used to cre-
ate dramatic special effects for feature films and commercials. One
of the best-known examples of shape transformation is in the film
Terminator 2. In this film, a cyborg policeman undergoes a number
of transformations from an amorphous and highly reflective surface
to various destination shapes. 2D image morphing would not have
accurately modeled the reflection of the environment off the surface
of the deforming cyborg, hence tailor-made 3D shape transforma-
tion programs were used for these effects [9].

In this paper we use variational interpolation in a new way to
produce high-quality shape transformations that may be used for
any of the previously mentioned applications. Our method allows a
user to control the transformation in several ways, and it is general
enough to produce transformations between shapes of any topology.

2 Previous Work

Most shape transformation techniques can be placed into one of
two categories: parametric correspondence methods and implicit

fufiction interpolation. Parametric methods are typically faster to
compute and require less memory because they operate on a lower-
dimensional representation of an object than do implicit function
methods. Unfortunately, transforming between objects of differ-
ent topologies is considerably more difficult with parametric meth-
ods. Parametric approaches also can suffer from problems with
self-intersecting surfaces, but this is never a problem with implicit
function methods. Techniques that use implicit function interpola-
tion gracefully handle changes in topology between objects and do
not create self-intersecting surfaces.

A parametric correspondence approach to shape transformation
attempts to find a “reasonable” correspondence between pairs of
Jocations on the boundaries of the two shapes. Intermediate shapes
are then created by computing interpolated positions between the
corresponding pairs of points. Many shape transformation tech-
niques have been created that follow the parametric correspondence
approach. One early application of this approach is the method
of contour interpolation described by Fuchs, Kedem and Uselton
[10]. Their method attempts to find an “optimal” (minimum-area)
triangular tiling that connects two contours using dynamic pro-
gramming. Many subsequent techniques followed this approach of
defining a quality measure for a particular correspondence between
contours and then invoking an optimization procedure [22, 25].
There have been fewer examples of using parametric correspon-
dence for 3D shape transformation. One quite successful 3D para-
metric method is the work of Kent et al. [17]. The key to their
approach is to subdivide the polygons of the two models in a man-
ner that creates a correspondence between the vertices of the two
models. More recently, Gregory and co-workers created a similar
method that also allows a user to specify region correspondences
between meshes to better control a transformation [12].

An entirely different approach to shape transformation is to cre-
ate an implicit function for each shape and then to smoothly interpo-
late between these two functions. A shape is defined by an implicit
function, f(x), as the set of all points x such that f (x) = 0. For
contour interpolation in 2D, the implicit function can be thought of
as a height field over a two-dimensional domain, and the boundary
of a shape is the one-dimensional curve defined by all the points
that have the same elevation value of zero. An implicit function in
3D is a function that yields a scalar value at every point in 3D. The
shape described by such a function is given by those places in 3D
whose function value is zero (the isosurface).

One commonly used implicit function is the inside/outside func-
tion or characteristic function. This function takes on only two
values over the entire domain. The two values that are typically
used are zero to represent locations that are outside and one to
signify positions that are inside the given shape. Given a power-
ful enough interpolation technique, the characteristic function can
be used for creating shape transformations. Hughes presented a
successful example of this approach by transforming characteris-
tic functions into the frequency domain and performing interpola-
tion on the frequency representations of the shapes {15]. Kaul and
Rossignac found that smooth intermediate shapes can be generated
by using weighted Minkowski sums to interpolate between charac-
teristic functions [16]. They later created a generalization of this
technique that can use several intermediate shapes to control the in-
terpolation between objects [24]. Using a wavelet decomposition
of a characteristic function allowed He and colleagues to create in-
termediates between quite complex 3D objects [13].

A more informative implicit function can provide excellent inter-
mediate shapes even if a simple interpolation technique is used. In
particular, the signed distance function (sometimes called the dis-
tance transform) is an implicit function that gives very plausible
intermediate shapes even when used with simple linear interpola-
tion of the function values of the two shapes. The value of the
signed distance function at a point X inside a given shape is just the
Euclidean distance between x and the nearest point on the bound-
ary of the shape. For a point x that is outside the shape, the signed
distance function takes on the negative of the distance from x to the
closest point on the boundary.

Several researchers have used the signed distance function to in-
terpolate between 2D contours [19, 14]. The distance function for
each given shape is represented as a regular 2D grid of values, and
an intermediate implicit function is created by linear interpolation
between corresponding grid values of the two implicit functions.
Each intermediate shape is given by the zero iso-contour of this in-
terpolated implicit function. In contrast to the global interpolation
methods described above (frequency domain, wavelets, Minkowski
sum), this interpolation is entirely local in nature. Nevertheless,
the shape transformations that are created by this method are quite
good. In essence, the information that the signed distance function
encodes (distance to nearest boundary) is enough to make up for
the purely local method of interpolation. Payne and Toga were the
first to transform three dimensional shapes using this approach [23].
Cohen-Or and colleagues gave additional control to this same ap-
proach by combining it with a warping technique in order to pro-
duce shape transformations of 3D objects [7].

Our approach to shape transformation combines the two steps
of building implicit functions and interpolating between them. To
our knowledge, it is the only method to do so. The remainder of
this paper describes how variational interpolation can be used to
simultaneously solve these two tasks.

3 Variational Interpolation

Our approach relies on scattered data interpolation to solve the
shape transformation problem. The problem of scattered interpo-
lation is to create a smooth function that passes through a given
set of data points. The two-dimensional version of this problem
can be stated as follows: Given a collection of k constraint points
{c1,¢2,...,¢x} that are scattered in the plane, together with scalar
height values at each of these points {h1,h2,...,h}, construct a
smooth surface that matches each of these heights at the given lo-
cations. We can think of this solution surface as a scalar-valued
function f(x) so that f(¢;) = h;, for 1 <i<k.

One common approach to solving scattered data problems is to
use variational techniques (from the calculus of variations). This
approach begins with an energy that measures the quality of an in-
terpolating function and then finds the single function that matches
the given data points and that minimizes this energy measure. For
two-dimensional problems, thin-plate interpolation is the varia-
tional solution when using the following energy function E:

E= /fox(x>+2f%.(x)+f,?y<x) ()

The notation fx, means the second partial derivative in the x di-
rection, and the other two terms are similar partial derivatives, one
of them mixed. The above energy function is basically a measure of
the aggregate squared curvature of f(x) over the region of interest
Q. Any creases or pinches in a surface will result in a larger value of
E. A smooth surface that has no such regions of high curvature will
have a lower value of E. The thin-plate solution to an interpolation
problem is the function f(x) that satisfies all of the constraints and
that has the smallest possible value of E.

The scattered data interpolation problem can be formulated in
any number of dimensions. When the given points ¢; are positions
in N-dimensions rather than in 2D, this is called the N-dimensional
scattered data interpolation problem. There are appropriate gener-
alizations to the energy function and to thin-plate interpolation for
other dimensions. In this paper we will perform interpolation in
two, three, four and five dimensions. Because the term thin-plate
is only meaningful for 2D problems, we will use variational inter-
polation to mean the generalization of thin-plate techniques to any
number of dimensions.

The scattered data interpolation task as formulated above is a
variational problem where the desired solution is a function, f(x),
that will minimize equation 1 subject to the interpolation constraints
f(c;) = h;. Equation 1 can be solved using weighted sums of the

Figure 2: Implicit functions for an X shape. Left shows the signed
distance function, and right shows the smoother variational implicit
function. -

radial basis function ¢(x) = x|21og(|x|). The family of variational
problems that includes equation 1 was studied by Duchon [8].

Using the appropriate radial basis function, we can then express
the interpolation function as

fx) = 3 djo(x—cj)+P(X) @

j=1

In the above equation, ¢; are the locations of the constraints,
the d; are the weights, and P(x) is a degree one polynomial that
accounts for the linear and constant portions of f. Because the
thin-plate radial basis function naturally minimizes equation 1, de-
termining the weights, d;, and the coefficients of P(x) so that the
interpolation constraints are satisfied will yield the desired solution
that minimizes equation 1 subject to the constraints. Furthermore,
the solution will be an exact analytic solution, and is not subject to
approximation and discretization errors that may occur when using
finite element or finite difference methods.

To solve for the set of d; that will satisfy the interpolation con-
straints k; = f(¢;), we can substitute the right side of equation 2 for
f(c;), which gives:

k
ki o= Y djolei—cj)+Pai) 3)
j=1

Since this equation is linear with respect to the unknowns, d;
and the coefficients of P(x), it can be formulated as a linear system.
For interpolation in 3D, let ¢; = (cf,c,c?) and let ¢;; = ¢(¢; —¢;).

Then this linear system can be written as follows:

C o 02 - O 1 & g GdTda] [Am]
01 ¢ .. Ou 1 g Cg o] d hy
o1 Or2 o 1 & o & dp | =| I
1 1 1 0 0 0 O Po 0
g G g 0 0 0 O Pl 0
c§ cg c§ 0 0 0 O p2 0

L4 4 d 00 0 ollpml L0

The above system is symmetric and positive semi-definite, so
there will always be a unique solution for the dj and p; [11]. For
systems with up to a few thousand constraints, the system can be
solved directly with a technique such as symmetric LU decompo-
sition. We used symmetric LU decomposition to solve this system
for all of the examples shown in this paper.

Using the tools of variational interpolation we can now turn our
attention to creating implicit functions for shape transformation.

Figure 3: Upper row is a shape transformation created using the
signed distance transform. Lower row is the sequence generated
using a single variational implicit function.

4 Smooth Implicit Function Creation

In this section we will lay down the groundwork for shape transfor-
mation by discussing the creation of smooth implicit functions for
a single shape. In particular, we will use variational interpolation of
scattered constraints to construct implicit functions. Later we will
generalize this to create functions that perform shape transforma-
tion.

Let us first examine the signed distance transformation because
it is commonly used for shape transformation. The left half of
Figure 2 shows a height field representation of the signed distance
function of an X shape. The figure shows sharp ridges (the medial
axis) that run down the middle of the height field. Ridges appear
in the middle of shapes where the points are equally distant from
two or more boundary points of the original shape. The values of 2
signed distance function decrease as one moves away from the ridge
towards the boundaries. Figure 3, top row, shows a shape interpola-
tion sequence between an X and an O shape that was created by lin-
ear interpolation between two signed distance functions. Note the
pinched portions of some of the intermediate shapes. These sharp
features are not isolated problems, but instead persist over many in-
termediate shapes. The cause of these pinches are the sharp ridges
of signed distance functions. In many applications such artifacts are
undesirable. In medical reconstruction, for example, these pinches
are a poor estimate of shape because most biological structures have
smooth surfaces. Because of this, we seek implicit functions that
are continuous and that have a continuous first derivative.

4.1 Variational Implicit Functions in 2D

We can create smooth implicit functions for a given shape using
variational interpolation. This can be done both for 2D and 3D
shapes, although we will begin by discussing the 2D case. In this
approach, we create a closed 2D curve by describing a number of
locations through which the curve will pass and also specifying a
number of points that should be interior to the curve. We call the
given points on the curve the boundary constraints. The boundary
constraints are locations at which we require our implicit function
to take on the value of zero. Paired with each boundary constraint
is a normal constraint, which is a location at which the implicit
function is required to take on the value one. (Actually, any posi-
tive value could be used.) The locations of the normal constraints
should be towards the interior of the desired curve, and also the line
passing through the normal constraint and its paired boundary con-
straint should be parallel to the desired normal to the curve. The
collection of boundary and normal constraints are passed along to
a variational interpolation routine as the scattered constraints to be
interpolated. The function that is returned is an implicit function
that describes our curve. The curve will exactly pass through our
boundary constraints.

Figure 4 (left) illustrates eight such pairs of constraints in the
plane, with the boundary constraints shown as circles and the nor-
mal constraints as plus signs. When we invoke variational interpo-

Figure 4: At left are pairs of boundary and normal constraints (cir-
cles and pluses). The middle image uses intensity to show the re-
sulting variational implicit function, and the right image shows the
function as a height field.

lation with such constraints, the result is a function that takes on the
value of zero exactly at our zero-value constraints and that is posi-
tive in the direction of our normal constraints (towards the interior
of the shape). The closed curve passing through the zero-value con-
straints in Figure 4 (middle) is the iso-contour of the implicit func-
tion created by this method. Figure 4 (right) shows the resulting
implicit function rendered as a height field. Given enough suitably-
placed boundary constraints we can define any closed shape. We
call an implicit function that is created in this manner a variational
implicit function. This new technique for creating implicit functions
also show promise for surface modeling, a topic that is explored in
[27].

We now turn our attention to defining boundary and normal con-
straints for a given 2D shape. Assume that a given shape is rep-
resented as a gray-scale image. White pixels represent the interior
of a shape, black pixels will be outside the shape, and pixels with
intermediate gray values lie on the boundary of the shape. Let m
be the middle gray value of our image’s gray scale range. Our goal
is to create constraints between any two adjacent pixels where one
pixel’s value is less than m and the other’s value is greater. Identify-
ing these locations is the 2D analog of finding the vertex locations
in a 3D marching cubes algorithm [21].

We traverse the entire gray-scale image and examine the east and
south neighbor of each pixel /(x,y). If I(x,y) < m and either neigh-
bor has a value greater than m, we create a boundary constraint at a
point along the line segment joining the pixel centers. A boundary
constraint is also created if I(x,y) > m and either neighbor takes
on a value less than m. The value of the constraint is zero, and we
set the position of the constraint at the location between the two
pixels where the image would take on the value of m if we assume
linear interpolation of pixel values. Next, we estimate the gradient
of the gray scale image using linear interpolation of pixel values
and central differencing. We then create a normal constraint a short
distance away from the zero crossing in the direction of the gradi-
ent. We have found that a distance of a pixel’s width between the
boundary and normal constraints works well in practice. Figure 2
(right) shows the implicit function for an X shape that was created
using variational interpolation from such constraints. It is smooth
and free of sharp ridges.

4.2 Variational Implicit Functions in 3D

We can create implicit functions for 3D surfaces using variational
interpolation in much the same way as for 2D shapes. Specifically,
we can derive 3D constraints from the vertex positions and surface
normals of a polygonal representation of an object. Let (x,y,z) and
(nx,ny,n;) be the position and the surface normal at a vertex, re-
spectively. Then a boundary constraint is placed at (x,y,z) and a
normal constraint is placed at (x — kny,y — kny,z — knz), where k is
some small value. We use a value of k = 0.01 for models that fit
within a unit cube for the results shown in this paper. All of the 3D
models that we transform in this paper were constructed by build-
ing an implicit function in this manner. Note that we can use this
method to build an implicit function whenever we have a collection
of points and normals-— polygon connectivity is not necessary.

Now that we can construct smooth implicit functions for both
two- and three-dimensional shapes, we turn our attention to shape
transformation. It would be possible to create variational implicit
functions for each of two given shapes and then linearly interpo-
late between these functions to create a shape transformation se-
quence. Instead, however, we will examine an even better way of
performing shape transformation by generalizing the implicit func-
tion building methods of this section.

5 Unifying Function Creation and Inter-
polation

The key to our shape transformation approach is to represent the
entire sequence of shapes with a single implicit function. To do so,
we need to work in one higher dimension than the given shapes.
For 2D shapes, we will construct an implicit function in 3D that
represents our two given shapes in two distinct parallel planes. This
is actually simple to achieve now that we know how to use scattered
data interpolation to create an implicit function.

5.1 Two-Dimensional Shape Transformation

Given two shapes in the plane, assume that we have created a set
of boundary and normal constraints for each shape, as described
in Section 4. Instead of using each set of constraints separately to
create two different 2D implicit functions, we will embed all of the
constraints in 3D. We do this by adding a third coordinate value
to the location of each boundary and normal constraint. For those
constraints for the first shape, we set the new coordinate ¢ for all
constraints to 1 = 0. For the second shape, all of the new coordinate
values are set t0 1 = Iy (some non-zero value). Although we have
added a third dimension to the locations of the constraints, the val-
ues that are to be interpolated remain unchanged for all constraints.

Once we have placed the constraints of both shapes into 3D,
we invoke 3D variational interpolation to create a single scalar-
valued function over R3. If we take a slice of this function iri the
plane 7 = 0, we find an implicit function that takes on the value
zero exactly at the boundary constraints for our first shape. In this
plane, our function describes the first shape. Similarly, in the plane
! = 1,ax this function gives the second shape. Parallel slices at loca-
tions between these two planes (0 < 7 < fmqy) represent the shapes
of our shape transformation sequence. Figure 1 illustrates that the
collection of intermediate shapes are all just slices through a surface
in 3D that is created by variational interpolation.

Figure 3 (bottom) shows the sequence of shapes created us-
ing this variational approach to shape transformation. Topology
changes (e.g. the addition or removal of holes) come “for free”,
without any human guidance or algorithmic complications. Notice
that all of the intermediate shapes have smooth boundaries, without
pinches. Sharp features can arise only momentarily when there is
a change in topology such as when two parts join. Figure 5 shows
two more shape transformations that use this approach and that also
incorporate warping. Warping is an another degree of control that
may be added to any shape transformation technique, and is in fact

©dP & § 8

The The The EIns End

Figure 5: Two shape transformation sequences (using the varia-
tional implicit technique) that incorporate warping.

.

an orthogonal issue to those of implicit function creation and inter-
polation. Although it is not a focus of our research, for complete-
ness we briefly describe warping in the appendix.

Why has this implicit function building method not been tried
using other ways of creating implicit functions? Why not, for
example, build a signed distance function in one higher dimen-
sion? Because a complete description of an object’s boundary is
required in order to build a signed distance function. When we em-
bed our two shapes into a higher dimension, we only know a piece
of the boundary of our desired higher-dimensional shape, namely
the cross-sections that match the two given objects. In contrast, a
complete boundary representation is not required when using varia-
tional interpolation to create an implicit function. Variational inter-
polation creates plausible function values in regions where we have
no information, and especially in the “unknown” region between
the two planes that contain all of our constraints. This plausibility
of values comes from the smooth nature of the functions that are
created by the variational approach.

5.2 Three-Dimensional Shape Transformation

Just as we create a 3D function to create a transformation between
2D shapes, we can move to 4D in order to create a sequence be-
tween 3D shapes. We perform shape interpolation between two
3D objects using boundary and normal constraints for each shape.
We place the constraints from two 3D objects into four dimensional
space, just as we placed constraints from 2D contours into 3D. Sim-
ilar to contour interpolation, the constraints are separated from one
another in the fourth dimension by some specified distance. We
place all the constraints from the first object at # = 0, and the con-
straints from the second object are placed at f = tipqx, Where tmax is
the given separation distance. We then create a 4D implicit func-
tion using variational interpolation. An intermediate shape between
the two given shapes is found by extracting the isosurface of a 3D
“slice” (actually a volume) of the resulting 4D function.

Figure 6 shows two 3D shape transformation sequence that were
constructed using this method. To extract these surfaces we use
code published by Bloomenthal that begins at a seed location on the
surface of a model and only evaluates the implicit function at points
near previously visited locations [4]. This is far more efficient than
sampling an entire volume of the implicit function and then ex-
tracting an isosurface from the volume. The matrix solution for the
transformation sequence of Figure 6 (left) required 13.5 minutes,
and each isosurface in the sequence took approximately 2.3 min-
utes to generate on an SGI Indigo2 with a 195 MHz R10000 pro-
cessor. Figure 6 (right) shows a transformation between 3D shapes
that used warping to align features.

6 Surface Reconstruction from Contours

So far we have only considered shape transformation between pairs
of objects. In medical reconstruction, however, it is often neces-
sary to create a surface from a large number of parallel 2D slices.
Can’t we just perform shape interpolation between pairs of slices
and stack the results together to create one surface in 3D? Although
this method will create a continuous surface, it is almost certain
to produce a shape that has surface normal discontinuities at the
planes of the original slices. In the plane of slice i, the surface cre-
ated between slice pairs i — 1 and i will usually not agree in surface
normal with the surface created between slices i and i+ 1. Nearly
all contour interpolation methods consider only pairs of contours at
any one time, and thus suffer from such discontinuities. (A notable
exception is [1]).

To avoid discontinuities in surface normal, we must use infor-
mation about more than just two slices at a given time. We can
accomplish this using a generalization of the variational approach
to shape transformation. Assume that we begin with & sets of con-
straints, one set for each 2D data slice. Instead of considering the
contours in pairs, we place the constraints for all of the slices into

Figure 6: 3D shape transformation sequences.

3D simultaneously. Specifically, the constraints of slice i are placed
in the plane z = si, where s is the spacing between planes. Once
the constraints from all slices have been placed in 3D, we invoke

<~

Figure 7: Reconstruction of hip joint from contours. Top row shows the five parallel slices used and the final surface. Bottom row shows

intersecting contours and the more detailed surface that is created.

variational interpolation once to create a single implicit function in
3D. The zero-valued isosurface exactly passes through each con-
tour of the data. Due to the smooth nature of variational interpola-
tion, the gradient of the implicit function is everywhere continuous.
This means that surface normal discontinuities are rare, appearing
in pathological situations when the gradient vanishes such as when
two features just barely touch. Figure 7 (top row) illustrates the
result of this contour interpolation approach. The hip joint recon-
struction in the upper right was created from the five slices shown
at the upper left.

A side benefit of using the variational implicit function method
is that it produces smoothly rounded caps on the ends of surfaces.
Notice that in Figure 7 (top left) that the reconstructed surface ex-
tends beyond the constraints in the positive and negative z direction
(the direction of slice stacking). This “rounding off” of the ends
is a natural side effect of variational interpolation, and need not be
explicitly specified.

6.1 Non-Parallel Contours

In the previous section, we only considered placing constraints
within planes that are all parallel to one another. There is noth-
ing special about any particular set of planes, however, once we
are specifying constraints in 3D. We can mix together constraints
that are taken from planes at any angle whatsoever, so long as we
know the relative positions of the planes (and thus the constraints).
Most contour interpolation procedures cannot integrate data taken
from slices in several directions, but the variational approach allows
complete freedom in this regard. Figure 7 (lower row) shows sev-
eral contours that are placed perpendicular to one another, and the
result of using variational interpolation on the group of constraints
from these contours.

6.2 Between-Contour Spacing

Up to this point we have not discussed the separating distance s
between the slices that contain the contour data. This separating
distance has a concrete meaning in medical shape reconstruction
from 2D contours. Here we know the actual 3D separation between
the contours from the data capture process. This “natural” distance
is the separating distance s that should be used when reconstruct-
ing the surface using variational interpolation. Upon reflection, it
is odd that some contour interpolation methods do not make use of
the data capture distance between slices. In some cases a medical
technician will deliberately vary the spacing between data slices in
order to capture more data in a particular region of interest. Us-
ing variational interpolation, we may incorporate this information

about varying separation distances into the surface reconstruction
process.

For both special effects production and for computer aided de-
sign, the distance between the separating planes can be thought of
as a control knob for the artist or designer. If the distance is small,
only pairs of features from the two shapes that are very close to one
another will be preserved through all the intermediate shapes. If
the separation distance is large, the intermediate shape is guided by
more global properties of the two shapes. In some sense, the sep-
arating distance specifies whether the shape transformation is local
or global in nature. The separation distance is just one control knob
for the user, and in the next section we will explore another user
control.

7 Influence Shapes

In this section we present a method of controlling shape transfor-
mation by introducing an influence shape. The idea to use addi-
tional objects as controls for shape transformation was introduced
by Rossignac and Kaul [24]. Such intermediate shape control can
be performed in a natural way using variational interpolation. The
key is to step into a still higher dimension when performing shape
transformation.

Recall that to create a transformation sequence between two
given shapes we added one new dimension, called 7 earlier. We
can think of the two shapes as being two points that are separated
along the r dimension, and these two points are connected by a line
segment that joins the two points along this dimension. If we be-
gin with three shapes, however, we can in effect place them at the
three points of a triangle. In order to do so we need not just one
additional dimension but two, call them s and 1.

As an example, we may begin with three different 3D shapes
A, B and C. To each constraint that describes one of the shapes,
we can add two new coordinates, s and r. Constraints from shape
A at (x,y,z) are placed at (x,y,z,0,0), constraints from shape
B are placed at (x,y,z,1,0) and shape C constraints are placed
at (x,y,z,1/2,1/2). Variational interpolation based on these 5-
dimensional constraints results in a 5D implicit function. Three-
dimensional slices of this function along the s-dimension between
0 and 1 are simply shape sequences between shapes A and B when
the 7-dimension value is fixed at zero. If, however, the r-dimension
value is allowed to become positive as s varies from 0 to 1, then
the intermediate shapes will take on some of the characteristics of
shape C. In fact, the 5D implicit function actually captures an entire
family of shapes that are various blends between the three shapes.
Figure 8 illustrates some members of such a family of shapes.

Influence Shape

Start Shape

Final Shape |

Figure 8: Sequence between star and knot can be influenced by a torus (the influence shape) if the path passes near the torus in the five-

dimensional space.

There is no reason to stop at three shapes. It is possible to place
four shapes at the corners of a quadrilateral, five shapes around a
pentagon, and so on. If we wish to use four shapes, then placing
the constraints at the corners of a quadrilateral using two additional
dimensions would not allow us to produce a shape that was arbi-
trary mixtures between the shapes. In order to do so, we can place
the constraints in yet a higher dimension, in effect placing the four
shapes at the corners of a tetrahedron in N + 3 dimensions, where
N is the dimension of the given shapes.

There are two related themes that guide our technique for shape
transformation. The first is that shape transformation should
be thought of as a shape-creation problem in a higher dimen-
sion. The second theme is that better shape transformation se-
quences are produced when all of the problem constraints are solved
simultaneously— in our case by using variational interpolation. In-
fluence shapes are the result of taking these ideas to an extreme.

8 Conclusions and Future Work
Our new approach uses variational interpolation to produce one im-

plicit function that describes an entire sequence of shapes. Specific
characteristics of this approach include:

e Smooth intermediate shapes
e Shape transformation in any number of dimensions

Analytic solutions that are free of polygon and voxel artifacts

Continuous surface normals for contour interpolation

e Contour slices may be at any orientation, even intersecting

This approach provides two new controls for creating shape
transformation sequences:

e Separation distance gives local/global interpolation tradeoff

e May use influence shapes to control a transformation

The approach we have presented in this paper re-formulates the
shape interpolation problem as an interpolation problem in one
higher dimension. In essence, we treat the “time” dimension just
like another spatial dimension. We have found that using the vari-
ational interpolation method produces excellent results, but the
mathematical literature abounds with other interpolation methods.
An exciting avenue for future work is to investigate what other in-
terpolation techniques can also be used to create implicit functions
for shape transformation. Another issue is whether shape transfor-
mation methods can be made fast enough to allow a user interactive
control. Finally, how might surface properties such as color and
texture be carried through intermediate objects?

9 Acknowledgements

This work owes a good deal to Andrew Glassner for getting us in-
terested in the shape transformation problem. We thank our col-
leagues and the anonymous reviewers for their helpful suggestions.
This work was funded by ONR grant N00014-97-1-0223.

References

(1] Barequet, Gill, Daniel Shapiro and Ayellet Tal, “History Considera-
tion in Reconstructing Polyhedral Surfaces from Parallel Slices,” Pro-
ceedings of Visualization 96, San Francisco, California, Oct. 27 ~
Nov. 1, 1996, pp. 149-156.

[2] Barr, Alan H., “Global and Local Deformations of Solid Primitives,”
Computer Graphics, Vol. 18, No. 3 (SIGGRAPH 84), pp. 21-30.

{3] Beier, Thaddeus and Shawn Neely, “Feature-Based Image Metamor-
phosis,” Computer Graphics, Vol. 26, No. 2 (SIGGRAPH 92), July
1992, pp. 35-42.

[4] Bloomenthal, Jules, “An Implicit Surface Polygonizer,” in Graphics
Gems IV, edited by Paul S. Heckbert, Academic Press, 1994, pp. 324-
349.

(5] Bookstein, Fred L., “Principal Warps: Thin Plate Splines and the De-
composition of Deformations,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, Vol. 11, No. 6, June 1989, pp. 567-585.

{6} Celniker, George and Dave Gossard. “Deformable Curve and Surface
Finite-Elements for Free-Form Shape Design,” Computer Graphics,
Vol. 25, No. 4 (SIGGRAPH 91), July 1991, pp. 257-266.

.

. [7] Cohen-Or, Daniel, David Levin and Amira Solomovici, “Three Di-

" " mensional Distance Field Metamorphosis,” ACM Transactions on
Graphics, 1997.

(8] Duchon, Jean, “Splines Minimizing Rotation-Invariant Semi-Norms
in Sobolev Spaces,” in Constructive Theory of Functions of Several
Variables, Lecture Notes in Mathematics, edited by A. Dolb and B.
Eckmann, Springer-Verlag, 1977, pp. 85-100.

[9] Duncan, Jody, “A Once and Future War,” Cinefex, No. 47 (entire issue
devoted to the film Terminator 2), August 1991, pp. 4-59.

[10] Fuchs, H.,Z. M. Kedem and S. P. Uselton, *“Optimal Surface Recon-
struction from Planar Contours,” Communications of the ACM, Vol.
20, No. 10, October 1977, pp. 693-702.

[11] Golub, Gene H. and Charles F. Ban Loan, Matrix Computations, John
Hopkins University Press, 1996.

(12} Gregory, Arthur, Andrei State, Ming C. Lin, Dinesh Manocha, Mark
A. Livingston, “Feature-based Surface Decomposition for Correspon-
dence and Morphing between Polyhedra”, Proceedings of Computer
Animation, Philadelphia, PA., 1998.

{13] He, Taosong, Sidney Wang and Arie Kaufman, “Wavelet- Based Vol-
ume Morphing,” Proceedings of Visualization 94, Washington, D.C,
edited by Daniel Bergeron and Arie Kaufman, October 17-21, 1994,
pp. 85-92.

[14] Herman, Gabor T. Jingsheng Zheng and Carolyn A. Bucholtz,
“Shape-Based Interpolation,” IEEE Computer Graphics and Appli-
cations, Vol. 12, No. 3 (May 1992), pp. 69-79.

[15] Hugues, John F, “Scheduled Fourier Volume Morphing,” Computer
Graphics, Vol. 26, No. 2 (SIGGRAPH 92), July 1992, pp. 43-46.

(16) Kaul, Anil and Jarek Rossignac, “Solid- Interpolating Deformations:
Construction and animation of PIPs,” Proceedings of Eurographics
'9], Vienna, Austria, 2-6 Sept. 1991, pp. 493-505.

{17] Kent, James R., Wayne E. Carlson and Richard E. Parent, “Shape
Transformation for Polyhedral Objects,” Computer Graphics, Vol. 26,
No. 2 (SIGGRAPH 92), July 1992, pp. 47-54.

(18] Lerios, Apostolos, Chase Garfinkle and Marc Levoy, “Feature-Based
Volume Metamorphosis,” Computer Graphics Proceedings, Annual
Conference Series (SIGGRAPH 95), pp. 449-456.

{19] Levin, David, “Multidimensional Reconstruction by Set-valued Ap-
proximation,” IMA J. Numerical Analysis, Vol. 6, 1986, pp. 173-184.

{20] Litwinowicz, Peter and Lance Williams, “Animating Images with
Drawings,” Computer Graphics Proceedings, Annual Conference Se-
ries (SIGGRAPH 94), pp. 409-412.

[21] Lorenson, William and Harvey E. Cline, “Marching Cubes: A High
Resolution 3-D Surface Construction Algorithm,” Computer Graph-
ics, Vol. 21, No. 4 (SIGGRAPH 87), July 1987, pp. 163-169.

[22] Meyers, David and Shelley Skinner, “Surfaces From Contours: The
Correspondence and Branching Probiems,” Proceedings of Graphics
Interface *91, Calgary, Alberta, 3-7 June 1991, pp. 246-254.

[23] Payne, Bradley A. and Arthur W. Toga, “Distance Field Manipulation
of Surface Models,” IEEE Computer Graphics and Applications, Vol.
12, No. 1, January 1992, pp. 65-71.

[24] Rossignac, Jarek and Anil Kaul, “AGRELSs and BIPs: Metamorphosis
as a Bezier Curve in the Space of Polyhedra,” Proceedings of Euro-
graphics *94, Oslo, Norway, Sept. 12-16, 1994, pp. 179-184.

[25] Sederberg, Thomas W. and Eugene Greenwood, “A Physically Based
Approach to 2-D Shape Blending,” Computer Graphics, Vol. 26, No.
2 (SIGGRAPH 92), July 1992, pp. 25-34.

[26] Sederberg, Thomas W. and Scott R. Parry, “Free-Form Deformations
of Solid Geometric Models,” Computer Graphics, Vol. 20, No. 4
(SIGGRAPH 86), pp. 151-160.

[27] Turk, Greg and James F. O’Brien, “Variational Implicit Surfaces,”
Tech Report GIT-GVU-99-15, Georgia Institute of Technology, May
1999, 9 pages.

[28] Wolberg, George, Digital Image Warping, IEEE Computer Society

Press, Los Alamitos, California 1990.

10 Appendix: Warping

Warping is a commonly used method of providing user control
of shape interpolation. Although warping is not a focus of our
research, for the sake of completeness we describe below how
warping may be used together with our shape transformation tech-
nique. Research on warping (sometimes called deformation) in-
clude [2, 26, 28, 3, 18, 7).

XX
X X

XHQNH
X000

Figure 9: The extreme left and right shapes in the top row have been
warped before creating the upper shape transformation sequence.
The lower row is an un-warped version of this sequence that gives
the final transformation from an X to O.

For symmetry, we choose to warp each shape “half-way” to the
other shape. Given a set of user-supplied corresponding points be-
tween two shapes A and B, we construct two displacement warp
functions w, and wg. The function w4 specifies what values to add
to locations on shape A in order to warp it half-way to shape B, and
the warping function wg warps B half of the way to A.

In what follows, we will describe the warping process for two-
dimensional shapes. Let {aj,ap,...,a;} be a set of points on
shape A, and let {bj,by,..., b} be the corresponding points on
B. We construct the two functions w4 and wp such that wa(a;) =
(b; — a;)/2 and wg(b;) = (a; —b;)/2 hold for all i. Constructing
these functions is another example of scattered data interpolation
which we can solve using variational techniques. For 2D shapes,
if a; = (a’,a) and b; = (b7, b)), then the x component wjof the
displacement warp w, has k constraints at the positions a; with
values (b7 — af)/2. We invoke variational interpolation to satisfy
these constraints, and do the same to construct the y component of
the warp. The function wp is constructed similarly. This is not
a new technique, and researchers who use thin-plate techniques to
perform shape warping include [5, 20] and others.

In order to combine warping with shape transformation, we use
these functions to displace all of the boundary constraints of the
given shapes. These displaced boundary constraints are embedded
in 3D (as described in Section 5) and then variational interpola-
tion is used to create the implicit function that describes the entire
shape transformation sequence. The result of this process is a three-
dimensional implicit function, each slice of which is an intermedi-
ate shape between two warped shapes. The top row of Figure 9
shows such warped intermediate shapes. We can think of the two
“ends” of this implicit function (at ¢ =0 and 7 = tma) as being
warped versions of our original shapes. In order to match the two
original shapes, the surface of this 3D implicit function needs to be
unwarped. To simplify the equations, assume that the value of Imax
is 2. If < 1 the unwarping function u(x, y,?) is:

u(xpt) = (x+ (1=twi(x,3),y+ (1 =wyxy)) - @
If 1 > 1 then the unwarping function is:

u(x,y,t) = (x+ (t— 1)w§(x,y),y+ (1 - I)M%(x,y),t) (5)

At the extreme of 7 = 0, the warp u(x,y,t) un-does the warping
we used for the first shape. At? = 2, the function u(x,y,!) reverses
the warping used for the second shape. When 1 = 1 (the middle
shape in the sequence), no warp is performed. The bottom sequence
of shapes in Figure 9 shows the result of the entire shape transfor-
mation process that includes warping. Both sequences in Figure 5
were created using warping in addition to shape transformation.

Although we have described the warping process for 2D shapes,
the same method may be used for shape transformation between 3D
shapes. For Figure 6 (right), warping was used to align the bunny
ears to the points of the star.

Robust Creation of Implicit Surfaces from

Polygonal Meshes

Gary Yngve Greg Turk
University of Washington Georgia Institute of Technology
gyngve@cs.washington.edu turk@cc.gatech.edu
\ Abstract

Implicit surfaces are used for a number of tasks in computer graphics, including modeling soft or organic objects,
morphing, collision detection, and constructive solid geometry. Although operating on implicit surfaces is usually
straightforward, creating them is not — interactive techniques are impractical for complex models, and automatic
techniques have been largely unexplored. We introduce a practical method for creating implicit surfaces from polygonal
models that produces high-quality results for complex surfaces. Whereas much previous work in implicit surfaces has
been done with primitives such as “blobbies,” we use implicit surfaces based on a variational interpolation technique
(the three-dimensional generalization of thin-plate interpolation). Given a polygonal mesh, we convert the data to a
volumetric representation to use as a guide for creating the implicit surface iteratively. We begin by seeding the surface
with a number of constraint points through which the surface must pass. Additional constraints are then added to
specify new points on the surface. The resulting intermediate surface is evaluated by error metrics, and this error guides
the placement of subsequent constraints. We have applied our method successfully to a variety of polygonal meshes and

consider it to be robust.
Keywords

Geometric Modeling, Surface Representations, Implicit Surfaces.

I. INTRODUCTION

The task of constructing smooth surfaces is ubiquitous throughout computer graphics. Often para-
metric surfaces are the choice representation because of the capabilities of many commercial modeling
packages. Once constructed, the parametric surfaces are then used in a variety of graphics algorithms,
ranging from ray-tracing to morphing. However, many of these graphics algorithms have more elegant
solutions when used with implicit surfaces. For implicit surfaces to become more widely used, however,
they must become easier to create. We approach this issue by introducing a new method to convert

polygonal surfaces to smooth implicit surfaces automatically.

Because points can be evaluated easily as being inside or outside an implicit surface, many applica-
tions that are challenging for parametric surfaces (including polygonal meshes) become simple when
implicit surfaces are used. Boolean CSG operations (union, intersection, subtraction) reduce to simply
examining the signs of the implicit functions. Operations on implicit surfaces that may cause the genus
of the surface to change have simple implementations because the operations affect every point in space
— on the isosurface, inside, and outside. Shape morphing can be performed simply by interpolating
between two implicit functions, and the two shapes can be of arbitrary manifold topology (1], [2], [3].
Implicit surfaces can collide and deform [4], [5]; the resulting fusions and separations are handled auto-
matically. Often in graphics, implicit functions are created by summing many infinitely differentiable
functions, yielding surfaces that are smooth and seamless. The forms that they can represent are
useful for modeling organic shapes and some classes of machine parts that require blends and fillets.

Although implicit surfaces have many benefits, they can be difficult to model. Most parametric
surface representations use basis functions with finite support, and thus give the user an easy way to
perform local control of the surface shape. In contrast, the bases which are used as primitives for im-
plicit surfaces can often have non-obvious influences on surface position. Modeling with “blobbies” [6]
suffers from this problem because each blobby primitive only indirectly influences the position of the
isosurface. We note that the work of Witkin and Heckbert is aimed at overcoming this difficulty {7].

In our approach, rather than using the more traditional blobby primitives approach to implicit
surface creation, we instead use variational implicit surfaces. This form of implicit surface allows a
user to specify locations that the surface will exactly interpolate; this property allows more direct
control over surface creation. As we will describe more fully later, solving a set of linear equations will
guarantee that the surface interpolates a given set of constraint points. In addition to this interpolating
property, variational implicit functions are smooth when their basis functions are chosen to satisfy an
energy functional related to the desired degree of smoothness. Our approach to creating these surfaces

is to add new constraints iteratively until the model is a close approximation to the input polygonal

. »

mesh. Figure 1 shows twenty-three iterations of our algorithm while creating a frog model.

We focus on the creation of implicit models from polygonal meshes because of the large number of
existing high-quality polygonal meshes. Having a robust automatic conversion procedure from meshes
to implicits should provide a pathway towards creating a large library of implicit surfaces. With such
a technique, all of the interactive modeling tools for creating polygonal meshes can then be used to
create implicit surfaces. This ability would mean that we can avoid having to create special-purpose
modeling programs for implicit surfaces. Because implicit models are so much more compact in terms
of storage, converting from polygons to implicits can also be viewed as a compression scheme.

The rest of the paper will proceed as follows: We briefly discuss previous work in implicit-surface

modeling in Section II. In Section III, we explain the variational implicit surface representation. Then

Fig. 1. A polygonal frog (top left) is converted to an implicit surface via our incremental improvement algorithm. The

algorithm took 23 iterations to reach the final result. The results from each iteration are shown in successive images.

The frog is a near fit after the first three rows; in the last row the toes get refined.

4

in Section IV, we introduce a set of tools that will be used by the algorithm. We present the algorithm
in Section V, analyze the algorithm’s parameters in Section VI, and show results in Section VII. Finally

we conclude and discuss future work in Section VIII.

1I. PrREVIOUS WORK

The very first implicit surfaces used in computer graphics were quadrics (degree-two polynomials
of z, y, and z), such as spheres, ellipsoids, and cylinders [8]. Blinn generalized these implicit surfaces
for the purpose of modeling molecules [6]. Basing his model on electron densities, he developed the

blobby molecule model, which consists of Gaussian-like primitives blended together:

fil@) = A= (1)

Each primitive is a radial basis function that can be tuned to control its size and blobbiness (its ten-
dency to blend). This method and its variants [9] are widely used in the computer graphics community.
As mentioned earlier, however, this form of implicit surface does not allow a user to directly specify
points that the surface interpolates. The user must somehow estimate the location of the middle of
the shape because this is where the centers of the primitives must be placed.

Another genre of implicit surfaces is the convolution surface [10]. These surfaces are created by
convolving a skeleton shape (e.g. a collection of polygons) with a kernel sush as a Gaussian. The
skeletons for the convolutions can actually be any form of geometry, including both 2D surfaces and
solid objects. The resulting convolution surface is smooth. As with the blobby implicits, convolution
surfaces do not allow a user to give specific points to be interpolated.

Interactive modeling techniques can be used to create implicit surfaces of modest complexity. One
elegant method for interactive modeling was described by Witkin and Heckbert, in which they use
particles to sample and control implicit surfaces [7). Particles diffuse across the surface and are created
and destroyed as necessary. They implemented their technique with blobby spheres and cylinders, and

their technique is adaptable to variational implicit surfaces as well. However, for creating complicated

models, more automatic methods are needed.

Muraki developed a method to approximate range data by a blobby implicit surface [11}. Muraki’s
method incrementally adds primitives one at a time. At each iteration his algorithm picks a primitive,
duplicates it, and then solves an optimization problem to minimize an energy functional. Because
this requires is solving an optimization problem every iteration, the method is exceedingly slow — a
model with 243 primitives took a few days to create on a Stardent Titan3000 2CPU. Bittar, Tsingos,
and Gascuel addressed the modeling of an implicit surface from volume data [12]. They calculate a
medial axis of the volume data as an aid to implicit function creation. They then use an optimization
scheme based on Muraki’s work to add primitives along the medial axis in substantially less time than
Muraki’s approach. However, the implicit surfaces that they generated with their method were small
(the largest had only about 50 primitives). Both of these techniques produce results that provide a
general fit of a model but lack high detail.

This brief summary barely scratches the surface of work on implicits in computer graphics. For
an excellent overview of the area and more details on kinds of implicit surfaces, see the book by

Bloomenthal et al. [13].

III. VARIATIONAL IMPLICIT SURFACES

In this section we give the equations that describe variational implicit surfaces and outline the

algorithm that we use to create such surfaces from polygonal meshes.
A. Basic Formulation

Variational implicit surfaces are created by solving a scattered data interpolation problem [14].
The particular solution technique is based on ideas from the calculus of variations (solving an energy
minimization problem). To create a variational implicit function, a user specifies a set of k constraint
points {ci,cy,...,Ck}, along with a set of values {hy,ho, ..., hx} at the given constraint positions.

The surfaces are controlled directly using three types of constraints. Boundary constraints are those

positions that are specified to take on the value zero, and the created implicit surface will exactly pass
through these points. In addition, we can specify that certain points will be interior or exterior to
the surface. Interior constraints are given positive values, and exterior constraints are given negative
values. To create the appropriate implicit function, these constraints are handed to a sparse data
interpolation routine that creates a function that exactly matches the given constraints.

The form of the function created by this technique is a weighted set of radial basis functions and
a polynomial term. The weights of the basis function are found by solving a matrix equation (given

below). We use the radial basis function

which minimizes the curvature functional

[£ (259) o | @

xcQ B

It is important to note that this functional does not represent curvature on the isosurface (the 2-
manifold f(z) = 0 embedded in bounded region €2), but rather the aggregate curvature of f over the

entire region.

Using this radial basis function, the implicit function that we create has the form

n

f(x) =>_d;p(x — ¢;) + P(x) (4)

j=1

In the above equation, c; are the locations of the constraints, the d; are the weights, and P(x) is a
first-degree polynomial that accounts for the linear and constant portions of f.
To solve for the set of d; that will satisfy the interpolation constraints h; = f(c;), we can substitute

the right side of equation 4 for f(c;), which gives:

hi =Y di¢(ci —¢;) + P(ci) (5)

i=1
Because equation 5 is linear with respect to the unknowns, d; and the coefficients of P(x), it can be

formulated as simple matrix equation. For interpolation in three dimensions, let ¢; = (cF,¢?,cf) and

let ¢;; = (c; — c;). Then the linear system can be written as the following matrix equation:

bz . b 1 G[d] [Mm]
do1 B2 ... P 1 5 & dy ha
b Pra oo Pk 1 i Gk de | = | M (6)
1 1 ... 1. 00 0 O Do 0
& & ... ¢ 00 00 D1 0
dd .4 000 0||m 0
| ¢ ¢ ... ¢¢ 00 0 0]]ps] LO_

We used LU decomposition to solve this system for all of the examples shown in this paper. With the

coefficients from the matrix solution (the d’s and p’s), evaluating the implicit function from Equation 4
becomes simple.
B. Outline of Our Approach

We will now examine how the constraints for a variational implicit surface can be derived from a
polygonal model. This task is easy for models that are composed of polygons that are all nearly the
same size. For such a polygonal model, we may use the vertices of the model as the positions of the
boundary constraints. Similarly, we can create exterior constraints by moving out from each vertex
in the normal direction. This basic technique was originally described in [14]. Unfortunately, most
models are made of polygons that are widely varying in size, and for such models it is more difficult
to create a variational implicit that faithfully matches a given polygonal model.

To produce high-quality implicit models from polygons, we have created an iterative method that

repeatedly adds new constraints to a variational implicit representation in a manner that is guided

by a volumetric description of the model. To do so, we use a voxelization process to create the
volumetric model from the polygons. The volumetric description of the given model acts as an ideal
(but storage-intensive) implicit representation of the model that we can use to compare against the
current variational implicit surface. In addition to the volumetric model, we also use a signed distance
function to measure errors in the current iteration and to place new boundary, interior and exterior
constraints. We repeatedly add new constraints until the implicit model is a near match to the original
model. In the next section we will discuss the creation of the volumetric model, the signed distance
function and the error metrics for evaluating the model. Later we describe in detail how they are used
to define new constraints to make a variational implicit surface that is a close match to our original

polygonal model.

IV. VOLUMES AND ERROR METRICS

We choose to convert the polygonal model into a volumetric model due to its convenience for
rapid evaluation of inside/outside queries. The disadvantages of a volumetric model are stora.gé and

computation costs.
A. Vozelization of a Polygonal Mesh

The process of converting a polygonal model into a volumetric representation is much like scan-
converting a two-dimensional polygon into a set of pixels. One way to perform two-dimensional
polygon scan conversion the is to find where a scanline intersects the edges of the polygon and then
use a parity count of the number of such intersections to determine if a pixel lies inside the polygon.
Similarly, to voxelize a polygonal mesh, we cast a ray through the mesh and find all the places where
the ray intersects the surface of the mesh. Any point along the ray can be classified as inside or
outside the polygonal model based on a simple parity count. To create a full volume, we cast a grid
of parallel rays through the mesh and regularly sample the points along these rays. Each sample

becomes one voxel. To minimize aliasing artifacts we perform supersampling and filtering so that the

Fig. 2. Original polygonal model of a scorpion (left), intermediate volumetric representation (center), and final implicit

surface (right) generated by our algorithm. The volumetric representation captures all but the finest detail, such as

the hairs on the tail. Our algorithm refined the implicit surface using the volumetric model as the goal.

final densities vary continuously between zero and one. Further details of the voxelization process,
including variations to handle troublesome meshes, can be found in [15). For example, Figure 2 shows
the original polygonal scorpion model on the left, the intermediate volumetric model in the center, and
the final implicit representation generated by our algorithm on the right. The intermediate volumetric
model captures all but the finest detail, such as the hairs on the tail, and serves as the goal surface
for the surface evaluation and refinement. Note that if one has a volumetric representation of a given
model, our method can be used directly to produce an implicit surface. Unfortunately most models

do not originally come in a volumetric form, hence our need for conversion from polygons to voxels.
B. Signed Distance Transform

We use a signed distance transform to measure the error between our volumetric model and a given
implicit representation. We use the voxelization of a given object as an inside-outside function of the
object, and for this purposé we clamp all densities to either zero or one. A distance transform of
an inside-outside function is the distance of a point to the nearest boundary (the transition regions
between densities of zero and one). A signed distance transform negates the distances of those points

that are outside the object.

Calculation of the signed distance transform for a large voxel volume can be expensive. Naively, the

10
running time for an n X n x n volume is O(n®). We use a three-dimensional version of Danielsson’s
method for computing Euclidean distances [16] to achieve a running time of O(n?®). This method
requires making a small fixed number of sweeps through the entire volume, and at each voxel only
a few neighbors are examined. The final result is a set of distances at each voxel that is a close

approximation to the (signed) Euclidean distance to the nearest boundary.
C. FError Metric

To guide our surface creation method, we use a metric to evaluate how closely our current variational
implicit surface matches the original data. Let 8f.ur be the set of boundary voxels in the volumetric
representation of the current implicit surface, and let Of40a be the boundary voxels of the goal, that is,
the volumetric representation of the original data. We want 0 fcur to equal 0f g, and we can measure

the symmetric difference by the Hausdorft metric

H = max | max (min T -),max min ||z — . 7
[zeafgoal yeafcurrll yH x€0feurr \Y€0Sgaal || y” ()

The Hausdorff metric is zero if and only if Ofcur and 0fgu are identical. Furthermore, we can
identify the voxels z farthest from the other surface and refine the surface by placing constraints at

those locations. Using the signed distance functions for the goal and current surfaces as lookup tables,

the new constraint location can be defined concisely and calculated efficiently as

Crew = arg max X ISdcurr(m)LIg}j%}fWISdgoal(x)| : (8)

The error metric has a two-fold purpose: to evaluate the attempted fit and to suggest where to
refine the implicit representation further. Figure 3 illustrates the use of the metric as part of our
algorithm on a two-dimensional teapot. Note that for 2D objects, the iso-valued set is one or more
closed contours. In the black and white portions of this figure, black denotes interior (positive function

values) and white denotes exterior (negative values). Images (a)-(e) show the refinement at the third

11

Y,
Y,

Fig. 3. Creating a two-dimensional implicit curve: To find the locations with greatest errors, we walk around the
|

c d
@ -

boundary of the goal curve and see how far it is from the boundary of the current curve. This query is done
via a signed distance lookup, seen in image (a). Image (b) shows the symmetric counterpart, walking around the
boundary of the goal curve and using the signed distance of the current curve. Locations of greatest errors become
new constraints, shown in magenta. Image (c) shows the new boundary constraints and image (d) shows the new

interior and exterior constraints. Image (e) shows the new curve after these refinements. Images (f)-(j) show the

method applied to a later iteration of the algorithm.

iteration. Image (a) shows the signed distance function of the current implicit curve (sdcu(z)) with
i the boundary of the goal (8fsou) overlaid. Similarly, image (b) shows sdgou(x) With Ofeur overlaid.
1 Positive values of the signed distance are blue and negative red. As the magnitude increases, the
colors go from dark to light. To find the locations to place new constraints, we simply walk around
the overlaid boundaries in images (a) and (b) and choose points with the brightest background color
(furthest distance from the other curve). The newly chosen constraints are shown as magenta dots
in image (c¢) (boundary constraints) and image (d) (interior and exterior constraints). The implicit

curve with these refinements is in image (e). Images (f)-(j) show the the respective information for

12

the refinement at the seventh iteration. After later iterations, the implicit curve becomes nearly
indistinguishable from the original data.

V. ITERATIVE IMPROVEMENT OF MODEL

We will now describe how the above tools allow us to model implicit surfaces. By using equation 8
to find candidate locations for more constraints, we can design an iterative algorithm to refine the
implicit surface. Below is pseudocode for our algorithm.

Algorithm MakeImplicitSurface(Volume fgoal» SDFunc $d goal)
Begin
Constraints = InitialConstraints(50)
Repeat
fewr = MakeImplicit(Constraints)
$durr = SignedDist(feur)
GenerateCandidateConstraints()
Repeat
PruneCandidatelist ()
NewCandidate = SelectHighestError()
Constraints.add(NewCandidate)
Until NoMoreCandidates
Until DoneRefining
End

First a number of initial constraints are chosen (in this case 50), a process which we discuss further
in subsection V-A. Then, for each iteration, the following steps are taken: The implicit surface for the
current set of constraints is generated by solving matrix equation 6. The resulting implicit function is
evaluated over the volume to obtain fe. (see subsection V-B), and the signed distance 8d gy Of this
function is also calculated. New candidate constraints are selected based on equation 8. Candidates
may be pruned due to their proximity to other constraints or for other reasons, discussed further in
subsection V-C. The candidates that are not pruned become new constraints, and the evaluation-

refinement process repeats. The algorithm terminates when the implicit surface fits fgou well enough,

13

and the criteria for termination is discussed in subsection V-D.
A. Initialization

The algorithm needs to start with an initial guess for the implicit surface before it can begin refining.
We need to decide how many initial constraints to place — we want to create a reasonable first attempt,
but we don’t want to overwhelm the system with too many constraints. To get a good balance between
these two extremes, we sample fifty boundary constraints from the points on the surface 0 fgor. Three-
dimensional Poisson-disk sampling ensures an approximately equal spacing of constraints. Constraints
that are close to each other tend to have more influence on the rest of the system and can cause matrix
equation 6 to be ill-conditioned. Other methods such as a point-repulsion technique might yield a
more regular distribution of initial constraints across the surface, but we have found that our simple
initialization technique is quite satisfactory.

In addition to choosing boundary constraints, we place non-zero constraints to indicate what portions
of space are interior or exterior. It is essential to have these further specifications; otherwise, the
isosurface could fit the goal exactly but the implicit function might be inside-out. These non-zero
constraints are weighted by the actual signed distances; constraints more distant from the surface have
larger magnitudes. For each of the boundary constraints that we have selected, we follow a path that
follows the gradient of the signed distance function until we reach a local extremum. An interior or
exterior constraint is then placed at this location. To decide whether to traverse the gradient uphill or
downhill, we try both directions and pick the longer path. Shorter paths are usually in the direction
that is locally convex. By selecting the longer path, our interior and exterior constraints then tend
to “fan out” instead of getting clustered in ridges or valleys of the signed distance function. Because
the implicit surface is smooth (locally planar), placing the interior or exterior constraints along the
gradient of the signed distance function not only tells the implicit surface what direction is outside

but also suggests the surface normal.

14
B. Implicit Function Evaluation

Given a current set of constraints, we solve the variational problem to obtain the basis-function
weights for the corresponding implicit surface. Then the implicit surface is evaluated throughout the
volume to find the boundary voxels 8f.~ and the signed-distance function sd . Once we classify
the boundary voxels and then compute signed distance function, we can evaluate the error metric
described in Section V.

Evaluating the implicit surface throughout the volume can be costly. Although surface-following
isosurface-extraction techniques can reduce the evaluations of the implicit function by an order of
magnitude, they make assumptions about topology; for example they may miss a detached portion
of the surface. We wish Of..w to capture all connected components, as they may indicate error
in the current implicit surface. Because the radial basis functions we use have infinite support, a
refinement in one location could create larger errors elsewhere. It is therefore especially critical to
not overlook any regions in the evaluation. However, we do not want to evaluate 1000 radial basis
functions over all the voxels in a 200 x 200 x 200 volume, which would be computationally expensive.
Our solution is to sample the volume ﬁnély in a thin shell around the goal boundary voxels and to
sample coarsely elsewhere, then sampling more finely if we detect a boundary. First we sample the
volume at coordinates that are all multiples of four. If any 4 x 4 x 4 cube does not have its eight
vertices entirely in the interior or exterior, we sample that cube voxel by voxel. Likewise, if the cube
is within eight voxels of a boundary of fgeu, we sample it voxel by voxel. Otherwise, the 4 x 4 x 4
cube is filled uniformly.

C. Refinement
Now that the boundary voxels can be evaluated by the metric, we can add constraints to refine

the implicit surface further. We want to avoid adding constraints one at a time because performing

an iteration per constraint would be quite costly. However, we also want to avoid having refinements

15

influencing each other and interfering. Likewise, making fine adjustments to regions of the surface could
be ineffectual if coarse adjustments are made elsewhere on the surface because some adjustments can
have a non-local effect.

We scan through 0f...» and 8f. to find the voxel with the maximum error. In the event of a tie,
we choose a boundary constraint over an interior or exterior constraint. The error for a voxel z in
Of curr 15 |5d goat(7)|, and the error for a voxel y in 0fgoar is |sd curr(y)|. We will introduce the notation
|sd(z)| to represent both these cases. Searching for the maximum error is equivalent to walking along
the overlaid boundaries in Figure 3 (a) and (b) and finding the largest magnitude (lightest background
color).

We pick our new constraints from the boundary voxels Ofcurr and 0fgoq. Constraints added from
Of 40a are boundary constraints. To prevent artifacts from the voxelization appearing, these constraints
are actually placed at sub-voxel precision according to the densities of the voxels. Constraints from
Ofurr are interior or exterior constraints, and take on the values given by the signed distance function
of fgoal-

Not all candidate constraint locations are beneficial. We take our current set of candidate constraints
and prune the list to avoid redundant or counterproductive constraints. To avoid having matrix
equation 6 become ill-conditioned, we discard candidates less than one voxel from any pre-existing
constraint. Boundary voxels with errors less than half the maximum error at the current iteration are
too fine an adjustment, so those voxels are eliminated from the candidate list. This pruning results in
only one constraint added per error so that no unnecessary constraints are placed. In the event that
only one constraint did not fix the error, more constraints will be added there at later iterations. We
eliminate any candidate that is within 2 x sd(z) of a voxel z where a constraint was added on the
current iteration. This distance restriction, along with the greedy approach of adding the constraints
with greatest errors first, guarantees that for all i, the circles of radius sd(z;) centered at z; will be

disjoint.

16
D. Termination

Finally we discuss how the algorithm terminates. Empirically we have found that the models tend
to refine themselves quickly at first and then slow as they converge to the goal models (see Figure 1).
We terminate the algorithm under four conditions. The algorithm terminates if the model has reached
a maximum error of one voxel, if a model has not improved in the previous four iterations, if too many
iterations have passed (we use 30), or if too many constraints have been placed (we use a maximum
of 5000). If successive models have the same Hausdorff error, we pick the best model based from a

similarly derived RMS error.

VI. PROGRAM PARAMETERS

Our algorithm has several parameters that govern its behavior. We will discuss each of these

parameters and show that the quality of the results are largely insensitive to their values.
A. Volume Resolution

Because our algorithm attempts to fit an implici‘_c surface to a signed distance function over voxels,
the performance is dependent on the voxel resolution. A low-resolution volume might not capture much
of the detail from the original polygonal model, and a high-resolution volume can be computationally
expensive. For the models shown in Section VII, we use high-resolution volumes, making sure that
the volumetric models lose little detail from the polygonal originals. However, our method can also
make implicit surfaces out of coarse volumetric data. In this case, much detail cannot be captured in
the implicit surface because it is not present in the volumetric model, but the implicit surfaces can be
computed in mere minutes.

Table I shows the results from varying the voxel resolution. For the lowest-resolution models, our
algorithm rapidly generates a nearly exact fit, in part because most of the high-frequency details from
the original models are smoothed away in the volumetric models. Figure 4 shows the volumetric models

and resulting implicit surfaces for models of a horse and Spock’s head at two low voxel resolutions.

TABLE I

’ VOLUME RESOLUTION

Model Size of | Iterations | Max Error | RMS Error Total | Total Time

Volume | to Finish | (in voxels) | (in voxels) | Constraints (h:m)
Bunny 60 x 70 x 69 12 1 0.1085 742 7
Bunny || 99 x 120 x 119 13 1 0.1399 3166 5:00
Bunny || 138 x 170 x 168 16 2 0.2798 1501 2:27
Horse 104 x 70 x 119 11 1 0.1416 1358 - 1:19
Horse || 195 x 120 x 228 18 2 0.1773 3952 4:50
Horse || 286 x 170 x 337 17 2 0.3003 2641 5:21
Spock 69 x 69 x 76 12 1 0.1591 990 15
Spock || 118 x 120 x 135 13 2 0.1815 3742 3:45
Spock | 168 x 170 x 193 18 2 0.2949 2543 5:57

B. Number of Initial Constraints

The final implicit surface is dependent on the number of constraints used to construct the initial

surface before the refinement passes. (For all the examples shown in Section VII, 50 boundary con-

Fig. 4. Top row: low-resolution volumetric representations of the horse (104 x 70 x 119, 195 x 120 x 228) and Spock

(69 x 69 x 76, 118 x 120 x 135). Bottom row: respective implicit surfaces generated by our algorithm.

18

TABLE II

NUMBER OF INITIAL CONSTRAINTS

Model Initial | Max | RMS Final | Max | RMS | Iterations | Total time

Constraints | Error | Error | Constraints | Error | Error | to finish (h:m)
Bunny 100 53 | 5.895 2556 2 | 0.0638 14 7:02
Bunny 200 36 | 5.335 2515 2 | 0.2715 16 6:15
Bunny 400 18 | 2.869 2145 2 | 0.2655 11 6:08
Bunny 800 31| 0.961 2774 2 | 0.2701 7 5:42
Bunny 1600 5| 0.389 2671 2 | 0.2768 5 7:35
Bunny 3200 6| 0.187 4057 2 | 0.0715 4 11:13
Triceratops 100 25 | 5.039 1803 2 | 0.2732 17 3:24
Triceratops 200 27 | 3.061 1953 2 | 0.0655 15 4:16
Triceratops 400 17 | 2.073 1910 2 | 0.0722 11 3:24
Triceratops 800 24 | 1.311 1906 3 | 0.2665 12 6:35
Triceratops 1600 16 | 0.709 2230 3 | 0.2658 10 7:13
Triceratops 3200 13 | 0.4712 3630 2 | 0.2549 7 12:25

straints and a total of 50 interior and exterior constraints were used for initialization.) Too few initial
constraints could be inefficient because the algorithm has to spend time up front just trying to get a
rough fit of the goal, such as trying to make the surface bounded. Too many constraints could result in
too much time being spent on solving for unnecessary constraints. For example, in Table II, both the
bunny and triceratops models took the longest to calculate when given the most initial constraints.
We experimented with seeding the implicit surface with values ranging from 50 boundary constraints
to 1600 boundary constraints (100 to 3200 total constraints). For all the different configurations, the
algorithm returned satisfactory results. Furthermore, simply adding more initial constraints does not
alone produce a good surface. The results in Table II indicate that although the first iterations of
the surfaces get better with more constraints, they are still nowhere near the desired fit. Figure 5
illustrates using varying numbers of initial constraints on the triceratops model. The implicit surfaces
created from the initial constraints alone get consistently better with more constraints, but even with
3200 total constraints, key features such as the horns are still lacking. However, for all the triceratops

tests, the final implicit surfaces captured these key features. Not only do these results indicate that the

19
amount of initial constraints is relatively inconsequential, but they also demonstrate why the iterative

refinement process is necessary.

For all of the results shown in Section VII, we initialize with 50 zero constraints and 50 interior and
exterior constraints. Using fewer initial constraints tends to give results more quickly, and with fewer

constraints the algorithm still produces comparable results to those that started with more constraints.

20

8} [Iun juswIoUYal juenbasqns 193je pue

JO sIteg ‘[OpOW dlIjPWIN[oA 9y} pue [opowr uogA[od [eUISHIO ST 3Jo] Ief 3y 'SIUIRIISUOD [RNIUT JO ISQUINU 31} JO J08Y° 8y} Suimoys

‘(19UI00 U SHUTRIISUOD JO IOqUINU Y}IM

(sared jo eSew] JyS11) sajeUIULIL) WY3LI0T[E

‘sared Jo oFeuur 9Jo]) sjureljsuod [RIIUI oY} Jsn[Iajje sj[nsol moys s[ppout

3

epout sdojeredily, ‘g "S14

21
C. Regularization Parameter

If we wish to approximate rather than exactly interpolate some of the constraints, we can use a slight
adaptation of matrix equation 6 for creating the implicit surfaces. We modify the matrix’s diagonal
entries of the form ¢; to ¢y + A;. Since ¢; = 0, a constraint with a non-zero) is not interpolated
exactly. Instead, the constraint’s position becomes a weighted average of the desire for interpolation
and the desire for regularization (smoothness). The experiments we describe next will explore the
tradeoffs between approximation and interpolation.

First we conducted a simple test of changing the \ values of the interior and exterior constraints.
For each of these constraints c;, we evaluated whether f(c;) had the same sign as the constraint weight
(positive for interior and negative for exterior). For A < 103, less than one percent of the constraints
had a different sign than when the implicit function was evaluated there. The boundary constraints
for the implicit surfaces were still interpolated exactly and produced just about no noticeable change
in appearance. However for A > 107, even though only about twenty percent of the constraints had a
different sign, the resulting models were inferior, especially around sharp features. When only affecting
the interior and exterior constraints, making X larger causes those constraints to have less of an effect
on the implicit surface.

Next we tried varying X for the boundary constraints as well. Instead of running our algorithm again
with the new), we simply took the constraints already produced and solved matrix equation 6 with the
new A. Although our algorithm refined the set of constraints given the old A = 0, the implicit surface
with the new) is still a nice fit. Although it may seem like a good idea to run the algorithm again
with the new), the errors will be in different places (partially because of the Poisson-disk sampling),
and hence, the results will be harder to compare.

Figure 6 shows enlarged images of the implicit horse with A = 0 and A = 100. Using A = 100 made
the ears of the horse nicer but sacrificed some detail around the nostrils. The smoother version of the

leg with A = 100 are more pleasing than the A = 0 version, especially the hoof and the dimple on the

Fig. 6. Implicit horse: head and leg. Top shows A =0 (exact interpolation), and bottom shows A

average of exact interpolation and curvature minimization).

inner thigh. All of the results in Section VII use A = 0; a user who wishes a smoother

A accordingly.

22

= 100 (weighted

model can set

23

VII. RESULTS

The main goal of our research is to create an entirely automatic algorithm for creating implicit
models from polygons, that is, to have a method that does not require human intervention and is
robust. We tested our algorithm on a variety of polygonal models, and we are convinced from its
performance that it will behave robustly for all but the most pathological of polygonal models.

Figure 7 and Figure 8 show the resulting implicit surfaces from our algorithm. The sub-images in
these figures are arranged in pairs, with the intermediate volumetric models (the left sub-images in a
pair) shown side-by-side with the resulting implicit surface create by our method (right sub-image of
pair). We choose to compare with the intermediate volumetric model because the implicit surface can
only capture features represented by it. For example, some surfaces that are paper-thin are problematic
for our algorithm because the voxelization will alias those regions or not even capture them. However,
we are not concerned by these pathological examples because they are difficult to represent well by
any type of implicit surface.

Figure 7 shows our results on six high-resolution models obtained from laser-scanning. In all cases,
our algorithm produced implicit surfaces that capture all of the main features of each model. The
bunny and teeth implicit surfaces look nearly identical to their volumetric counterparts. The two head
models are also close matches, although small but sharp creases such as wrinkles or eyelids are not
always captured. The algorithm performs the least well on the Buddha model, apparent from both
the image and the data in Table III. It is hard to fit a surface through the Buddha model because
of all the detail, especially high curvature areas such as the folds on the robe. The implicit surface
for the dragon model captures all of the macroscopic features but does not capture the fine scales.
Perhaps more constraints could capture these very fine details, but the computational expense would
be extreme. A more reasonable approach would be to encode the scales as a bump map or displacement
map (see Future Work). We do not know of any other method for creating implicit surfaces that would

give results comparable to those shown in this figure.

24

‘wyjIos[e o wolij

(sired jo sefewr jyS11) sevejins jpIdwl euy pue (sared jo sefewr jjo[) suolyejussaIdal DLIJPUIN]OA SJRIPIULIIUL S[opoU [euoSKjod pauueos a3xe[x15 "L 81

5

‘wiyjtIoSfe mo woyj (sired jo

2

seSew jyBu1) seoejns jwidu [euy pue(sired Jo sefewl 3J3]) suOyejUAsEIdoT DLIIPUWIN[OA JRIPIULIAIUT SUOLIDI 2InyeAInd-yS1y 10 ury) Yjim sppoul Xig g 31

26

Figure 8 shows our results on six polygonal models that contain high-curvature regions or thin
surfaces. The triceratops model has long thin horns, and the horse model has long thin legs and small
pointy ears. All of these features were captured by the implicit surface created by our algorithm. The
foot model contains many long thin bones, but the most difficult part of the model is not the bones
but the very thin gaps between the bones. The flamingo not only has wiry legs but also the thin foot
webbing and wings. The wings are particularly hard to fit because they are separated from the rest
of the body by a very small gap. The model with the ants crawling around the trefoil knot is also a
very difficult model because of the high curvature around the holes. The isosurface has a high genus
(many holes) — the algorithm has no knowledge of this fact but performs well nevertheless. For all of
these models, despite their high-curvature features, the resulting implicit surfaces fit the original data
quite well.

For more quantitative comparisons, Table III gives the numbers of iterations, the numbers of con-
straints in the final implicit surfaces, and the errors of the final implicit surfaces. Each final implicit
surface was specified using roughly two to three thousand constraints and achieved a root-mean-squared
error of less than one voxel. The Igea artifact model (upper left in Figure 7) took the fewest itera-
tions; most likely the algorithm did not have to refine much because the model did not have many
high-curvature regions. The scorpion and flamingo took the most iterations; we conjecture that the
variational implicit surfaces had a difficult time fitting these goal models due to their high curvature.

Table IV shows the running times for the algorithm on all of the models. The running times
ranged from a few hours to just over a day for the Buddha model. Most of the compute time for the
algorithm was in the implicit function evaluation stage. Each evaluation of the implicit surface at a
point requires O(n) floating-point operations, where 7 is the number of constraints. Our evaluation
method tests a shell of voxels, so the running time of the evaluation is O(nz?), where z represents
one of the dimensions of the intermediate voxel volume. Unfortunately, the shell is rather thick, and

in the later iterations, the number of constraints can get quite high. For many of our models, the

TABLE III

IMPLICITIZATION OF POLYGONAL MODELS

Model Iterations Zero Interior Exterior | Max. Error | RMS Error
to Finish | Constraints | Constraints | Constraints | (in voxels) | (in voxels)
Bunny 16 1718 63 734 2 0.2715
Dragon 22 1627 163 791 2 0.3329
Flamingo 26 1858 143 472 2 0.2726
Foot Bones 22 2307 138 681 2 0.3018
Frog 24 1900 137 791 2 0.2840
Happy Buddha 24 1788 196 648 4 0.6732
Horse 17 1829 88 724 2 0.3003
Igea Artifact 8 1591 54 842 2 0.3149
Scorpion 27 1992 179 483 3 0.7784
Spock 18 1444 81 1018 2 0.2949
Teeth Cast 17 2489 81 915 2 0.2655
Trefoil 23 2463 501 89 5 0.3844
Triceratops 17 1333 84 386 2 0.2732
TABLE IV
RUNNING TIME OF IMPLICITIZATION (IN HOURS:MINUTES)
Model Size of Time until Time until | Total
Volume | RMS Error < 2 | RMS Error < 1 | Time
Bunny 176 x 220 x 218 1:15 1:45 | 7:02
Dragon 113 x 220 x 163 49 1:50 | 5:41
Flamingo 237 x 120 x 288 39 1:21 | 740
Foot Bones 138 x 320 x 124 47 1:30 | 6:46
Frog 247 x 220 x 151 1:44 3:46 | 16:07
Happy Buddha || 170 x 170 x 373 6:15 15:42 | 24:47
Horse 286 x 170 x 337 1:58 3:01 | 5:21
Igea Artifact 220 x 220 x 161 14 52| 2:16
Scorpion 335 x 220 x 180 1:40 2:57 | 3:56
Spock 168 x 170 x 193 27 1:18 | 5:57
Teeth Cast 223 x 170 x 269 1:09 2:44 | 11:35
Trefoil 119 x 220 x 208 2:11 7:30 | 9:23
Triceratops 124 x 320 x 155 41 1:03 | 3:24

27

28
last few iterations amounted to half the total running time or more. Because we wanted to err on the
conservative side regarding evaluating the implicit function as exactly as possible, there may be a fair
amount of room for speeding up the evaluation, such as reducing the thickness of the shell. Solving
matrix equation 6 also is expensive for a large number of constraints. Using LU decomposition on a
matrix with n constraints requires O(n®) operations. Because the evaluation was still more expensive,
we did not focus on improving the matrix solution; using a method such as Jacobi iteration with the
last set of weights as the initial value could accelerate the matrix solution. The timing information to
achieve root-mean-squared errors less than two voxels and less than one voxel are also shown in the
table; for most of the models, the times to reach these accuracies is substantially less than the total
running times.

VIII. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, our method is the first approach that automatically converts an
arbitrary polygonal mesh to a smooth implicit surface. We have tested our method on a variety of
complex polygonal meshes, and we are convinced empirically that it behaves robustly. Specifically, we

feel that our method makes the following new contributions to computer graphics:

. Automatically converts any manifold polygonal mesh to a smooth implicit surface.
« Generates implicit surfaces from low-resolution data very fast.

« Provides a general framework for other basis functions or other implicit surface representations.

There are several potential directions for future work. One avenue is looking at classes of basis
functions that either have finite support or approach zero asymptotically. We will still be able to
specify constraints to be interpolated exactly, but the basis functions will not minimize the aggregate
curvature discussed in Section III. However, using such basis functions should speed up the algorithm
because the matrix will be sparse and implicit function evaluations will only have to use nearby basis

functions.

29

More work still needs to be done on representing high-frequency features such as thin surfaces and

fine detail. Thin surfaces might be better represented by other radial basis functions or by basis

functions that could be weighted along principal directions (much like the covariance matrix for a

Gaussian). We do not feel that adding more constraints is the right way to capture fine detail. Rather,

fine detail could be added by local-influence implicit surfaces. Another logical path to explore is adding

fine features (such as scales on the dragon) using normal or displacement maps.

IX. ACKNOWLEDGEMENTS

We would like to thank Hughes Hoppe for providing the Spock dataset. We would also like to thank

James O’Brien and the Geometry Group at Georgia Tech for helpful advice and discussions. This

research was funded in part by ONR grant N00014-97-1-0223.

2]

3]

[4]

(6]

[7]

[9]

(10]

(11]

[12]

REFERENCES

Bradley Payne and Arthur Toga, “Distance field manipulation of surface models,” IEEE Computer Graphics and Applications,
vol. 12, pp. 65-71, 1992.

John Hughes, “Scheduled fourier volume morphing,” in Computer Graphics Proceedings, Annual Conference Series (SIG-
GRAPH 92), 1992, pp. 43-46.

Greg Turk and James F. O’Brien, “Shape transformation using variational implicit functions,” in Computer Graphics
Proceedings, Annual Conference Series (SIGGRAPH 99), 1999, pp. 335-342.

Mathieu Desbrun and Marie-Paule Gascuel, “Animating soft substances with implicit surfaces,” in Computer Graphics
Proceedings, Annual Conference Series (SIGGRAPH 95), 1995, pp. 287-290.

Marie-Paule Gascuel, “An implicit formulation for precise contact modeling between flexible solids,” in Computer Graphics
Proceedings, Annual Conference Series (SIGGRAPH 93), 1993, pp. 313-320.

James F. Blinn, “A generalization of algebraic surface drawing,” ACM Transactions on Graphics, vol. 1, no. 3, pp. 235-256,
1982.

Andrew P. Witkin and Paul S. Heckbert, “Using particles to sample and control implicit surfaces,” in Computer Graphics
Proceedings, Annual Conference Series (SIGGRAPH 94), 1994, pp. 269-278.

Joshua Levin, “A parametric algorithm for drawing pictures of solid objects composed of quadric surfaces,” Communications
of the ACM, vol. 19, pp. 555-563, 1976.

Geoff Wyvill, Craig McPheeters, and Brian Wyvill, “Data structures for soft objects,” The Visual Computer, vol. 2, no. 4,
pp. 227-234, 1986.

Jules Bloomenthal, “Convolution surfaces,” in Computer Graphics Proceedings, Annual Conference Series (SSIGGRAPH 91),
1991, pp. 251-256.

Shigeru Muraki, “Volumetric shape description of range data using ‘blobby model’,” in Computer Graphics Proceedings,
Annual Conference Series (SIGGRAPH 91), 1991, pp. 227-235.

Eric Bittar, Nicolas Tsingos, and Marie-Paule Gascuel, “Automatic reconstruction of unstructured 3d data: Combining a

medial axis and implicit surfaces,” in Computer Graphics Forum (Proceedings of Eurographics 95), 1995, vol. 14, pp. 457-468.

30

[13] Jules Bloomenthal, Ed., Introduction to Implicit Surfaces, chapter Convolution of skeletons, pp. 222-241, Morgan Kaufmann
Publishers, Inc., San Francisco, California, 1997.

[14] Greg Turk and James F. O’Brien, “Variational implicit surfaces,” Tech. Rep. 15, Georgia Institute of Technology, 1999.
[15] F.S. Nooruddin and Greg Turk, “Simplification and repair of polygonal models using volumetric techniques,” Tech. Rep.
Technical Report GIT-GVU-99-37, Graphics, Visualization and Usability Center, Georgia Institute of Technology, 1999.

[16] Per-Erik Danielsson, “Euclidean distance mapping,” Computer Graphics and Image Processing, vol. 14, pp. 227-248, 1980.

